
DevSecOps Project with EC2, Docker,
Jenkins, Prometheus, Grafana, and
Kubernetes
This project involves deploying a Net�ix application using AWS

EC2, Docker, Jenkins, SonarQube, Trivy, Prometheus, Grafana, and

Kubernetes. It covers phases of setup, security scanning, CI/CD

automation, monitoring, and more.

Phase 1: Launching EC2 Instance

Setting Up EC2

EC2 Instance Launch:

Launched an EC2 instance with Ubuntu OS for the project.

2. Instance Type Selection:

Choose t2.large instance (2 vCPUs, 8 GB RAM) to e�ciently

handle the workload.

3. Elastic IP Association:

Associated an Elastic IP to ensure a static public IP address for

consistent access.

1.

•

•

•

Cloning the Application Code

Update and Clone: First, update the instance and clone the

application code from GitHub.

Ec� instance Launching

This ports should be open in this server

Phase 2: Security Setup
Install Docker: Set up Docker on the EC2 instance to containerize

the application. By using the following commands.

git clone <URL>

sudo apt-get update
sudo apt-get install docker.io -y

Connecting to the EC� Server

The command sudo usermod -aG docker $USER adds the current

user to the docker group. It allows the user to run Docker

commands without needing sudo privileges every time.

Run Docker Container:

Built and ran the Docker container to deploy the application

securely and e�ciently.

sudo usermod -aG docker $USER
newgrp docker

docker build -t netflix .
docker run -d --name netflix -p 8081:80 netflix:latest

Docker container

Rebuild Docker Image with TMDB API Key

TMDB?

TMDB (The Movie Database) is an online database that

provides movie and TV show data through an API. We can use

it to fetch information like movie titles, ratings, cast, etc.

How to Get TMDB API Key:

Go to TMDB.

Create an account or log in.

Navigate to Account Settings > API.

Generate a new API key.

1.

2.

•

•

•

•

Accessing the app without TMDB API Key

3. Why Use TMDB API Key?

The API key is required to authenticate and get access to

TMDB data.

Without it, our requests will be rejected.

4. Di�erence With and Without API Key:

With API Key: Full access to detailed movie information (e.g.,

ratings, cast, genres).

Without API Key: Limited or no access to data, and the API

will return an error.

•

•

•

•

TMDB

5. Rebuild Docker Image with API Key:

Once we have the API key, include it in Docker container to

enable access to TMDB data when the app runs.

Rebuild the Docker image a�er con�guring the API key in

application.

docker build --build-arg TMDB_V3_API_KEY=<your-api-key> -t netfl

Accessing the app with TMDB API Key

Phase 3: CI/CD Pipeline with Jenkins
In this phase, we will install and con�gure Jenkins on an EC2

instance, set up essential plugins, and de�ne a CI/CD pipeline. The

pipeline will incorporate steps for building, analyzing code quality

(SonarQube), and security scanning (Trivy). This will help us to

automate the development process, ensuring secure and high-

quality applications.

Step 1: Install Jenkins on EC2

Before starting, ensure that we have a Java Development Kit (JDK)

installed, as Jenkins is built on Java and requires it to run.

Install OpenJDK :
Verify Java Installation & Install Jenkins

sudo apt update
sudo apt install fontconfig openjdk-17-jre
java -version
openjdk version "17.0.8" 2023-07-18
OpenJDK Runtime Environment (build 17.0.8+7-Debian-1deb12u1)
OpenJDK 64-Bit Server VM (build 17.0.8+7-Debian-1deb12u1,

Jenkins
sudo wget -O /usr/share/keyrings/jenkins-keyring.asc https://pkg
echo deb [signed-by=/usr/share/keyrings/jenkins-keyring.asc] htt
sudo apt-get update
sudo apt-get install jenkins

Access Jenkins Web Interface: Open browser and navigate

to http://<EC2-public-IP>:8080

sudo systemctl start jenkins
sudo systemctl enable jenkins

Jenkins UI

To unlock Jenkins for the �rst time, get the initial password:

Use this password to complete the setup. Once done, we will be

able

to install the suggested plugins and set up an admin user.

Step 2: Con�gure Jenkins Plugins

To integrate SonarQube, Docker, and NodeJS into Jenkins, we need

to install the necessary plugins.

Install Necessary Jenkins Plugins

Go to Manage Jenkins > Manage Plugins.

In the Available tab, search for and install the following plugins:

SonarQube Scanner (for SonarQube integration)

Docker (to integrate Docker builds)

NodeJS (if needed for Node.js builds)

Eclipse Temurin Installer (Install)

* Congu�re Java and Nodejs in Global Tool

sudo cat /var/lib/jenkins/secrets/initialAdminPassword

•

•

•

•

Con�guration

Goto Manage Jenkins → Tools → Install JDK(17) and NodeJs(16)→

Click

on Apply and Save.

* OWASP Dependency-Check Con�guration
in Jenkins

OWASP Dependency-Check is a tool that identi�es project

dependencies and checks them for known, publicly disclosed

vulnerabilities. It scans project’s dependencies, such as libraries,

frameworks, and tools, to identify if any have known security

vulnerabilities.

In a DevSecOps pipeline, integrating OWASP Dependency-Check

helps automate the security scanning of project’s dependencies

during the CI/CD process.

Steps to Install and Con�gure OWASP Dependency-
Check in Jenkins

1. Install the OWASP Dependency-Check Plugin

Go to “Dashboard” in Jenkins web interface.

Navigate to “Manage Jenkins” → “Manage Plugins.”

Click on the “Available” tab and search for “OWASP

Dependency-Check Plugin.” Click on Install.

This plugin will allow Jenkins to scan the dependencies of the

project and report vulnerabilities.

2. Con�gure the OWASP Dependency-Check Tool
in Jenkins

Once the plugin is installed, we need to con�gure the OWASP

Dependency-Check tool in Jenkins:

Go to Jenkins Dashboard → Manage Jenkins → Global Tool

Con�guration.

Scroll down to the OWASP Dependency-Check section.

Click on Add Dependency-Check and provide the following

details:

Name: Give a name to the tool, e.g., DP-Check (this name will

be referenced in the pipeline).

Install automatically: Check this option to allow Jenkins to

download and install the tool automatically.

Directory: Optionally, we can specify a custom directory to

install the tool if needed.

Save con�guration.

This con�guration ensures that Jenkins has access to the

Dependency-Check tool for security scans.

3. Con�gure OWASP Dependency-Check in the
Jenkins Pipeline

To use the Dependency-Check tool within Jenkins pipeline, we will

integrate it into the stages of our pipeline con�guration.

Here’s an example pipeline where OWASP Dependency-Check is

used to scan project dependencies for vulnerabilities:

pipeline {
 agent any

 tools {
 jdk 'jdk17'
 nodejs 'node16'
 }

 environment {
SCANNER_HOME = tool 'sonar-scanner'

 }

 stages {
stage('Clean Workspace') {

 steps {
cleanWs() // Cleans the workspace before startin

 }
 }

stage('Checkout from Git') {
 steps {
 git branch: 'main', url: '<URL>'
 }

* Install Docker Tools and Docker Plugins:

Go to “Dashboard” in Jenkins web interface.

Navigate to “Manage Jenkins” → “Manage Plugins.”

Click on the “Available” tab and search for “Docker.”

Check the following Docker-related plugins:

Docker

Docker Commons

 }
stage('Install Dependencies') {

 steps {
 sh "npm install" // Install Node.js dependencies
 }
 }

stage('OWASP Dependency-Check Scan') {
 steps {

// Run Dependency-Check scan on the project
 dependencyCheck additionalArguments

// Publish the Dependency-Check report after the
 dependencyCheckPublisher pattern
 }
 }
 }
}

Docker Pipeline

Docker API

docker-build-step

Click on the “Install without restart” button to install these

plugins.

Add DockerHub Credentials:

Go to “Dashboard” → “Manage Jenkins” → “Manage

Credentials.”

Click on “System” and then “Global credentials

(unrestricted).”

Click on “Add Credentials” on the le� side.

Choose “Secret text” as the kind of credentials.

Enter DockerHub credentials (Username and Password) and

give the credentials an ID (e.g., “docker”).

Click “OK” to save DockerHub credentials.

Now, we have installed the Dependency-Check plugin, con�gured

the tool, and added Docker-related plugins along with DockerHub

credentials in Jenkins. We can now proceed with con�guring

Jenkins pipeline to include these tools and credentials in the CI/CD

process.

Security Scanning with SonarQube & Trivy

In this phase, we’ll be con�guring SonarQube and Trivy for

security scanning in the DevSecOps pipeline. This involves

integrating SonarQube with Jenkins for continuous code analysis

and using Trivy to scan Docker images for vulnerabilities.

Install and Con�gure SonarQube with Jenkins

SonarQube is a tool used for static code analysis to �nd bugs, code

smells, and security vulnerabilities. Integrating SonarQube with

Jenkins allows us to run security and quality scans automatically as

part of our CI/CD pipeline.

Here’s how to install and con�gure SonarQube with Jenkins:

Install and Run SonarQube in a Docker Container

First, run SonarQube in a Docker container on our EC2 instance:

Pipeline

This command will pull the o�cial SonarQube Docker image and

run it in detached mode (-d), mapping the container's port 9000

to the EC2 instance's port 9000.

We can access SonarQube at http://<EC2-public-IP>:9000

(default credentials are admin/admin).

Install SonarQube Plugin in Jenkins:

Open Jenkins in a web browser at http://<EC2-public-

IP>:8080 .

Go to Manage Jenkins > Manage Plugins.

In the Available tab, search for SonarQube Scanner.

Check the box next to SonarQube Scanner and click Install

without restart or with restart.

Con�gure SonarQube Server in Jenkins:

Once the plugin is installed, navigate to Manage Jenkins >

Con�gure System.

Scroll down to SonarQube Servers and click Add SonarQube.

docker run -d --name sonar -p 9000:9000 sonarqube:lts-community

Fill in the following details:

Name: Enter a name for the SonarQube instance (e.g.,

SonarQube).

SonarQube Server URL: http://<EC2-public-IP>:9000 .

Authentication Token: Generate an authentication
token from SonarQube:

Log in as admin and navigate to My Account > Security >

Generate Tokens.

Copy the token and paste it into Jenkins under Authentication

Token.

Click Save.

Con�gure SonarQube Scanner in Jenkins

Now, con�gure the SonarQube Scanner in Jenkins to analyze code

during the CI/CD pipeline.

Go to Global Tool Con�guration:

Navigate to Manage Jenkins > Global Tool Con�guration.

Scroll down to SonarQube Scanner and click Add SonarQube

Scanner.

Give it a name (e.g., SonarQube Scanner).

Select Install automatically to have Jenkins download and

install the scanner.

We can also choose Install from speci�c location if we have a

custom setup.

Click Save.

Con�gure Jenkins Pipeline for SonarQube Analysis

We can now con�gure a Jenkins pipeline to integrate SonarQube

scanning. Depending on whether we use a Freestyle Project or

Pipeline.

For Pipeline Job (Jenkins�le): If we use a Jenkins�le for pipeline as

code, here’s a basic pipeline setup:

pipeline {
 agent any
 environment {

SONARQUBE = 'SonarQube' // Name of SonarQube server conf
 }
 stages {

stage('Build') {
 steps {
 script {

// Your build steps here
 }
 }
 }

stage('SonarQube Analysis') {

 steps {
 script {

// Run SonarQube Scanner for analysis
withSonarQubeEnv('SonarQube'

 sh 'mvn clean install sonar:sonar'
 }
 }
 }
 }
 }
}

Install and Run Trivy for Docker Image Scanning

SonarQube Analysis

Trivy is a simple yet powerful security scanner for Docker images

that detects vulnerabilities and miscon�gurations.

1. Install Trivy on EC2

Run the following command to install Trivy on EC2 instance:

2. Scan Docker Image with Trivy

To scan Docker image for vulnerabilities, run the following

command:

Replace <image_id> with the ID or name of the Docker image you

want to scan (e.g., netflix:latest).

The output will show the vulnerabilities detected in the image,

with details like severity and a�ected packages.

sudo apt-get install trivy

trivy image <imageid>

Integrating SonarQube and Trivy into
Jenkins Pipeline

A�er setting up SonarQube and Trivy, we can integrate both tools

into Jenkins pipeline to scan the code and Docker images

automatically during the CI/CD process.

SonarQube: Scans the code for quality issues, bugs, code

smells, and security vulnerabilities.

Trivy: Scans Docker images for known vulnerabilities.

•

•

pipeline {
 agent any
 tools {
 jdk 'jdk17'
 nodejs 'node16'
 }
 environment {
 SCANNER_HOME = tool 'sonar-scanner'

Img scanning through trivy

 }
 stages {
 stage('clean workspace') {
 steps {
 cleanWs()
 }
 }
 stage('Checkout from Git') {
 steps {
 git branch: 'main', url: '<URL>'
 }
 }
 stage('SonarQube Analysis') {
 steps {
 withSonarQubeEnv('sonar-server'
 sh '''
 $SCANNER_HOME/bin/sonar-scanner -Dsonar.proj
 '''
 }
 }
 }
 stage('Quality Gate') {
 steps {
 script {
 waitForQualityGate abortPipeline
 }
 }
 }
 stage('Install Dependencies') {
 steps {
 sh "npm install"
 }
 }

 stage('OWASP FS Scan') {
 steps {
 dependencyCheck additionalArguments
 dependencyCheckPublisher pattern
 }
 }
 stage('TRIVY FS Scan') {
 steps {
 sh "trivy fs . > trivyfs.txt"
 }
 }
 stage('Docker Build & Push') {
 steps {
 script {
 withDockerRegistry(credentialsId:
 sh "docker build --build-arg TMDB_V3_API
 sh "docker tag netflix sirishassss/netfl
 sh "docker push sirishassss/netflix:late
 }
 }
 }
 }
 stage('TRIVY Image Scan') {
 steps {
 sh "trivy image sirishassss/netflix:latest > tri
 }
 }
 stage('Deploy to container') {
 steps {
 sh 'docker run -d -p 8081:80 sirishassss/netflix
 }
 }
 }

}

Phase 4: Monitoring

Pipeline

Img pushed to DockerHub

We can set up Prometheus and Grafana on the same EC2 instance

as Jenkins server. However, if the instance starts running slowly

because it’s handling both Jenkins and the monitoring tools, it’s

better to separate them.

Instance to setup Monitoring tools

By moving Prometheus and Grafana to a di�erent EC2 instance,

we

can make sure that monitoring doesn’t slow down Jenkins pipeline.

This way, we can keep both Jenkins and the monitoring tools

running smoothly without a�ecting each other.

Install Prometheus and Grafana:

Set up Prometheus and Grafana to monitor application.

Prometheus is an open-source monitoring tool that collects and

stores metrics as time-series data. It helps monitor applications,

infrastructure, and services, providing powerful querying and

alerting capabilities.

Installing Prometheus:

•

This ports should be open in this server

•

First, create a dedicated Linux user for Prometheus and

download Prometheus:

Extract Prometheus �les, move them, and create directories:

Set ownership for directories:

sudo useradd --system --no-create-home --shell /bin/
wget https://github.com/prometheus/prometheus/releases

tar -xvf prometheus-2.47.1.linux-amd64.tar.gz
cd prometheus-2.47.1.linux-amd64/
sudo mkdir -p /data /etc/prometheus
sudo mv prometheus promtool /usr/local/bin/
sudo mv consoles/ console_libraries/ /etc/prometheus/
sudo mv prometheus.yml /etc/prometheus/prometheus.yml

sudo chown -R prometheus:prometheus /etc/prometheus/ /data/

Create a systemd unit con�guration �le for Prometheus:

Add the following content to the prometheus.service �le:

sudo nano /etc/systemd/system/prometheus.service

[Unit]
Description=Prometheus
Wants=network-online.target
After=network-online.target

StartLimitIntervalSec=500
StartLimitBurst=5

[Service]
User=prometheus
Group=prometheus
Type=simple
Restart=on-failure
RestartSec=5s
ExecStart=/usr/local/bin/prometheus \
 --config.file=/etc/prometheus/prometheus.yml \
 --storage.tsdb.path=/data \
 --web.console.templates=/etc/prometheus/consoles \
 --web.console.libraries=/etc/prometheus/console_libraries \

Brief explanation of the key parts in this prometheus.service �le:

User and Group specify the Linux user and group under

which Prometheus will run.

ExecStart is where we specify the Prometheus binary path,

the location of the con�guration �le (prometheus.yml), the

storage directory, and other settings.

web.listen-address con�gures Prometheus to listen on all

network interfaces on port 9090.

web.enable-lifecycle allows for management of Prometheus

through API calls.

Enable and start Prometheus:

 --web.listen-address=0.0.0.0:9090 \
 --web.enable-lifecycle

[Install]
WantedBy=multi-user.target

sudo systemctl enable prometheus
sudo systemctl start prometheus

Verify Prometheus’s status:

We can access Prometheus in a web browser using server’s IP

and port 9090: http://<your-server-ip>:9090

sudo systemctl status prometheus

Installing Node Exporter:

Node Exporter is an open-source Prometheus exporter that

exposes hardware and OS-level metrics from Linux and Unix-based

I have added the Targets in the prometheus

systems. It collects data like CPU usage, memory, disk, and

network statistics, allowing Prometheus to monitor system

performance.

Create a system user for Node Exporter and download Node

Exporter:

Extract Node Exporter �les, move the binary, and clean up:

Create a systemd unit con�guration �le for Node Exporter:

sudo useradd --system --no-create-home --shell /bin/
wget https://github.com/prometheus/node_exporter/releases

tar -xvf node_exporter-1.6.1.linux-amd64.tar.gz
sudo mv node_exporter-1.6.1.linux-amd64/node_exporter /usr/local
rm -rf node_exporter*

Add the following content to the node_exporter.service �le:

Enable and start Node Exporter:

sudo nano /etc/systemd/system/node_exporter.service

[Unit]
Description=Node Exporter
Wants=network-online.target
After=network-online.target

StartLimitIntervalSec=500
StartLimitBurst=5
[Service]
User=node_exporter
Group=node_exporter
Type=simple
Restart=on-failure
RestartSec=5s
ExecStart=/usr/local/bin/node_exporter --collector.logind
[Install]
WantedBy=multi-user.target

Verify the Node Exporter’s status:

We can access Node Exporter metrics in Prometheus.

Con�gure Prometheus Plugin Integration:

Integrate Jenkins with Prometheus to monitor the CI/CD

pipeline.

Prometheus Con�guration:

To con�gure Prometheus to scrape metrics from Node

Exporter and Jenkins, you need to modify the prometheus.yml

�le. Here is an example prometheus.yml con�guration for

setup:

sudo systemctl enable node_exporter
sudo systemctl start node_exporter

sudo systemctl status node_exporter

replace <your-jenkins-ip> and <your-jenkins-port> with the

appropriate values for your Jenkins setup.

Check the validity of the con�guration �le:

Reload the Prometheus con�guration without restarting:

global:
scrape_interval: 15s

scrape_configs:
- job_name: 'node_exporter'
static_configs:

- targets: ['localhost:9100']

- job_name: 'jenkins'
metrics_path: '/prometheus'
static_configs:

- targets: ['<your-jenkins-ip>:<your-jenkins-port>'

promtool check config /etc/prometheus/prometheus.yml

We can access Prometheus targets at: http://<your-

prometheus-ip>:9090/targets

Install Grafana

Grafana is an open-source data visualization and monitoring

platform that allows users to create interactive dashboards. It

integrates with various data sources, including Prometheus, to

visualize time-series data, metrics, and logs for monitoring

applications, infrastructure, and services.

Install Grafana on Ubuntu and Set it up to Work with Prometheus

Step 1: Install Dependencies:

First, ensure that all necessary dependencies are installed:

Step 2: Add the GPG Key:

curl -X POST http://localhost:9090/-/reload

sudo apt-get update
sudo apt-get install -y apt-transport-https software

Add the GPG key for Grafana:

Step 3: Add Grafana Repository:

Add the repository for Grafana stable releases:

Step 4:Update the package list and install Grafana:

Step 5: Enable and Start Grafana Service:

To automatically start Grafana a�er a reboot, enable the service:

wget -q -O - https://packages.grafana.com/gpg.key | sudo apt-key

echo "deb https://packages.grafana.com/oss/deb stable main"

sudo apt-get update
sudo apt-get -y install grafana

Then, start Grafana:

Step 6: Check Grafana Status:

Verify the status of the Grafana service to ensure it’s running

correctly:

Step 7: Access Grafana Web Interface:

Open a web browser and navigate to Grafana using server’s IP

address. The default port for Grafana is 3000. http://<your-server-

ip>:3000

sudo systemctl enable grafana-server

sudo systemctl start grafana-server

sudo systemctl status grafana-server

We’ll be prompted to log in to Grafana. The default username is

“admin,” and the default password is also “admin.”

Step 8: Change the Default Password:

When we log in for the �rst time, Grafana will prompt us to change

the default password for security reasons. Follow the prompts to

set a new password.

Step 9: Add Prometheus Data Source:

To visualize metrics, we need to add a data source. Follow these

steps:

Click on the gear icon () in the le� sidebar to open the

“Con�guration” menu.

Select “Data Sources.”

Click on the “Add data source” button.

Choose “Prometheus” as the data source type.

In the “HTTP” section:

Set the “URL” to http://localhost:9090 (assuming

Prometheus is running on the same server).

Click the “Save & Test” button to ensure the data source is

working.

Step 10: Import a Dashboard:

To make it easier to view metrics, we can import a pre-con�gured

dashboard. Follow these steps:

Click on the “+” (plus) icon in the le� sidebar to open the

“Create” menu.

Select “Dashboard.”

Click on the “Import” dashboard option.

Enter the dashboard code we want to import (e.g., code 1860).

Click the “Load” button.

Select the data source we added (Prometheus) from the

dropdown.

Click on the “Import” button.

We should now have a Grafana dashboard set up to visualize

metrics from Prometheus.

Grafana is a powerful tool for creating visualizations and

dashboards,

Con�gure Prometheus Plugin Integration:

Integrate Jenkins with Prometheus to monitor the CI/CD

pipeline.

Grafana dashboard after con�guring Prometheus.

Jenkins Performance and overview

Phase 6: Kubernetes Cluster and
Monitoring

EKS Cluster Setup

In this phase, we’ll set up a Kubernetes cluster with node groups in

console. This will provide a scalable environment to deploy and

manage applications.

Node Exporter(Metrics Overview)

EKS Cluster

Cluster

c�alarge instances are nodes for the cluster

Setting Up AWS CLI and Con�guring Credentials

Before accessing the EKS cluster, we need to install and con�gure

the AWS CLI. Follow these steps:

Install AWS CLI:

First, we’ll need to install the AWS CLI on our machine. We can do

this by running the following commands:

sudo apt-get update
sudo apt-get install awscli
aws --version

Ports

Con�gure AWS CLI with Credentials:

Next, we need to con�gure AWS credentials (which will allow us to

access our AWS account). Run the following command:

It will prompt us to enter the following information:

AWS Access Key ID: We can �nd this in our AWS account

(under IAM > Users > [your user] > Security Credentials >

Access keys).

AWS Secret Access Key: This is also available under IAM user’s

security credentials.

Default region name: Enter the region where EKS cluster is

located, such as ap-south-1 or us-east-1 .

Default output format: We can choose between json , text ,

or table (typically json is �ne).

Access the EKS Cluster:

Now the AWS CLI is set up, we can use it to access EKS cluster by

updating kubecon�g �le. Run the following command:

aws configure

This will con�gure kubectl to interact with our EKS cluster.

Monitor Kubernetes with Prometheus

Prometheus is a powerful monitoring and alerting toolkit, and

we’ll use it to monitor Kubernetes cluster. Additionally, we’ll install

the node exporter using Helm to collect metrics from cluster

nodes.

Installing Helm

Helm is a package manager for Kubernetes that simpli�es the

deployment and management of applications and services. It

allows us to easily install and con�gure applications using “charts”

(pre-con�gured Kubernetes resources). To install Prometheus

Node Exporter (and other services) on Kubernetes cluster, we’ll

need to have Helm install

Install Helm on Local Machine or Server:

aws eks update-kubeconfig --name "Cluster-Name"

Accessing EKS cluster by updating kubecon�g �le

Install Node Exporter using Helm

To begin monitoring Kubernetes cluster, we’ll install the

Prometheus Node Exporter. This component allows us to collect

system-level metrics from cluster nodes. Here are the steps to

install the Node Exporter using Helm:

Add the Prometheus Community Helm repository:

2. Create a Kubernetes namespace for the Node Exporter:

sudo apt-get update
sudo apt-get install -y apt-transport-https
curl https://baltocdn.com/helm/signing.asc | sudo apt-key add -
sudo apt-get install -y helm

helm repo add prometheus-community https://prometheus-community.

kubectl create namespace prometheus-node-exporter

3. Install the Node Exporter using Helm:

helm install prometheus-node-exporter prometheus-community/prome

Add a Job to Scrape Metrics on nodeip:9001/metrics in

prometheus.yml:

Update Prometheus con�guration (prometheus.yml) to add a new

job for scraping metrics from nodeip:9001/metrics. We can do this

by adding the following con�guration to your prometheus.yml �le:

- job_name: 'Netflix(job name)'
metrics_path: '/metrics'
static_configs:

- targets: ['node1Ip:9100']

prometheus-node-exporter installation throuh helm

Reload or restart Prometheus to apply these changes to

con�guration.

To deploy an application with ArgoCD, we can follow these steps:

Deploy Application with ArgoCD

Install ArgoCD:

We can install ArgoCD on Kubernetes cluster by following the

instructions provided in the EKS Workshop documentation.

Argocd installation

https://medium.com/r/?url=http%3A%2F%2FEKS%20Workshop
https://medium.com/r/?url=http%3A%2F%2FEKS%20Workshop

Set the GitHub Repository as a Source:

A�er installing ArgoCD, we need to set up the GitHub

repository as a source for our application deployment. This

typically involves con�guring the connection to our repository

and de�ning the source for our ArgoCD application. The

speci�c steps will depend on our setup and requirements.

Create an ArgoCD Application:

name : Set the name for application.

destination : De�ne the destination where application should

be deployed.

project : Specify the project the application belongs to.

1.

2.

3.

•

•

•

LB

••

source : Set the source of application, including the GitHub

repository URL, revision, and the path to the application

within the repository.

syncPolicy : Con�gure the sync policy, including automatic

syncing, pruning, and self-healing.

Argocd

4. Access the Application

To Access the app make sure port 30007 is open in our security

group and then open a new tab paste NodeIP:30007, our app

should be running.

•

To access metrics pubi-p of node inst along with port

Cleanup

Cleanup AWS EC2 Instances:

Terminate AWS EC2 instances that are no longer needed.•

Accessing application

