DevSecOps Project with EC2, Docker,
Jenkins, Prometheus, Grafana, and
Kubernetes

This project involves deploying a Netflix application using AWS
EC2, Docker, Jenkins, SonarQube, Trivy, Prometheus, Grafana, and
Kubernetes. It covers phases of setup, security scanning, CI/CD

automation, monitoring, and more.

Phase 1: Launching EC2 Instance
Setting Up EC2
1. EC2Instance Launch:
Launched an EC2 instance with Ubuntu OS for the project.
2. Instance Type Selection:

Choose t2.large instance (2 vCPUs, 8 GB RAM) to efficiently
handle the workload.

3. Elastic IP Association:

Associated an Elastic IP to ensure a static public IP address for

consistent access.

(=)

Dashbosrd <
£c2 Global iew
Events

¥ Instances
nstances
Instance Types
Launch Templates
Spot Requests
Savings lans
Reserved nstances
Dedicated Hosts
Capacity Reservations

v Images
s
AMiCatalog

¥ Elastic Block Store
Volumes
Snapshots
Ufecycle Manager

v Network & Security
Securtty Groups
Elastic s
Placement Groups
Keypars
Network Interfaces

v Load Balancing

Load Balancers

Instances (1/2) e

® o=

Ie) G) =D

((Q i mstance by ateruteortog (case-sensewe)) (Awsaes v) 1 ®
B Namep v | instanced | instancestate v | instancetype ¥ | Status check | Aarmstatus | AvailabilityZone ¥ | Public IPva DNs v | PubliciPva... v | Elasticll

(@ etigenkins__rocaozsesocbr20775 @ruming @ @ tzlarge ©2/2 checks passec_View alarms + _ ap-south-1a e2-13-233-2175.3p-5. 132332175 13253
O Monitoring 1-0eb83d9absbag7O7F @runing @ @ t2.medium @ initializing Viewalarms + ap-south-a c2-13-203-138-86.3p- 13.205.138.86 132081

i-0c8025¢60cb72077b (Netflix-jenkins) ® v
Details ~ Statusandalarms | Monitoring | Security ~ Networking ~ Storage Tags

v Instance summary info

Instance 1D
) 1-0cs025¢60672077>

1PvS address
Hostname type
1P name: 1p-172-31-43-15.ap-south-1.compute.nternal

Answar private resource DNS name

Public 1Pvé address
15 13.235.21.75 | open address

Instance state
@ Running

Private IP DNS name (IPva only)
1T 1p-172-31-43-15.3p-south-1.compute intemal

Instance type
t2large

Private 1Pva addressas
0 172314315

Public IPva DNS

1) ec2-13-233-21-75.ap-south-1.compute.amazonaws.com|
open address [2

Elastic 1P addresses

Target Groups IPva (8) 161 15.255.21.75 (netflix-elp) [Public IP]
Ec2 instance Launching
$g-07e1fd5bd5c15f114 - netflix-jenkins
Details
Security group name Security group 1D Description veci
T netflxjenkins 0 sg-07e1fdsbse1s11a 10 taunch-wizard-1 created 1T voc-Obacsdd126310419 [
2024-12-29T14:1444.7532
Owner Inbound rules count Outbound rules count
1T 288761748973 6 Permission entries 1 Permission entry
Inbound rules | Outbound rules | Sharing-new | VPCassociations-new | Tags
Inbound rules (6) @ Manage tags Edit inbound rules
(@ searcn) 1 @
O/ Name v | Securitygrouprule 1D ¥ | 1P version v | Type v | Protocol v | Portrange v | Source | Descripti
o - sgr-0f8c8f5f1bfas0009 1Pva HITTP Tcp 20 0.00.0/0 -
o - sqrOcicofcibeesasifb 1pva HrTPS e as3 0000/0 -
o - sgr0ausachiboefe77sb pva Custom TcP e som 0000/0 applicatio
o - sgr-08a0bd967b6eebsoc 1Pvd. Custom TcP TP 9000 0.00.0/0 sonar por
o - sgr-045fc0dasec169ffa 1Pva. Custom TCP TP 8080 00.0.0/0 Jenkins pc
o - sgr-0182abfeafcsbffes 1Pva SsH Tcp 22 0.00.0/0 -

This ports should be open in this server

Cloning the Application Code

Update and Clone: First, update the instance and clone the

application code from GitHub.

git clone <URL>

S ssh -1 NEW-Key.pem ubuntu@13.233.21.75
Welcome to Ubuntu 24.04.1 LTS (GNU/Linux 6.8.0-1021-aws Xx86_64)

* Documentation: https://help.ubuntu.com

* Management: http: /landscape.canonical.com

* Support: https://ubuntu.com/pro

System information as of Sat Jan 4 16:57:06 UTC 2025

System load: 0.0 Processes: 129

Usage of /: 45.0% of 23.17GB Users logged in: [¢]

Memory usage: 46% IPv4 address for enX0: 172.31.43.15
Swap usage: 0%

* Ubuntu Pro delivers the most comprehensive open source security and
compliance features.

https://ubuntu.com/aws/pro
Expanded Security Maintenance for Applications is not enabled.

32 updates can be applied immediately
To see these additional updates run: t list --upgradable

1 additional security update can be applied with ESM Apps.
Learn more about enabling ESM Apps service at https://ubuntu.com/esm

Connecting to the EC2 Server

Phase 2: Security Setup

Install Docker: Set up Docker on the EC2 instance to containerize

the application. By using the following commands.

sudo apt-get update
sudo apt-get 1install docker.io -y

sudo usermod -aG docker S$USER
newgrp docker

The command sudo usermod -aG docker $USER adds the current
user to the docker group. It allows the user to run Docker

commands without needing sudo privileges every time.

Run Docker Container:
Built and ran the Docker container to deploy the application

securely and efficiently.

docker build -t netflix .
docker run -d --name netflix -p 8081:80 netfli

8 S docker run -d --name netflix -p 8081:80 netflix:latest
ea8e0451bdd3F5485b17288addf84639c0d868bFdf4dsd3cbf368af615Ffict

docker
CONTAINER ID IMAG COMMAND CREATED STATU: PORTS NAMES
eage0451bdd3 netflix:latest "nginx -g ‘dismon of." 6 seconds ago Up 5 seconds ©0.0.0.0:8081->86/tcp, :::8681->80/tcp netflix
: $

Docker container

Accessing the app without TMDB API Key

Rebuild Docker Image with TMDB API Key

1.

TMDB?
TMDB (The Movie Database) is an online database that
provides movie and TV show data through an API. We can use

it to fetch information like movie titles, ratings, cast, etc.

How to Get TMDB API Key:

Go to TMDB.
Create an account or log in.
Navigate to Account Settings > API.

Generate a new API key.

« c O 8 hp themoviedb.org n) © @8 =

TMDB @ wvovies Tvshows People More

e shirishareddy

Account Settings
Oefauit Language
English (en-US)

Edit Profile

Fallback Language
None (Don't Fallback)
Streaming Services
Country
Notification Settings
= India
Blocked Users
Timezone - Auto detect? 2
Import List

Asia-Kolkata
Sharing Settings

Include Adult temsin Search?
Sessions No
el Filter Profanity?
Delete Account Yes

Enable Keyboard Shortcuts?

TMDB

3. Why Use TMDB API Key?

- The API key is required to authenticate and get access to
TMDB data.

- Without it, our requests will be rejected.
4. Difference With and Without API Key:

- With API Key: Full access to detailed movie information (e.g.,

ratings, cast, genres).

- Without API Key: Limited or no access to data, and the API

will return an error.

5. Rebuild Docker Image with API Key:

Once we have the API key, include it in Docker container to

enable access to TMDB data when the app runs.

Rebuild the Docker image after configuring the API key in

application.

docker build --build-arg TMDB_V3_API_KEY=<your-

« c O 8 13.233.21.75:8081/browse

MyList Movies TvShows

Red One

After Santa Claus (codename: Red One) is kidnapped; the
North Pole's Head of Security must team up with the world's
most infamous tracker in a globe-trotting, action-packed.

m @ More Info

Popular Movies

Accessing the app with TMDB API Key

Phase 3: CI/CD Pipeline with Jenkins

In this phase, we will install and configure Jenkins on an EC2
instance, set up essential plugins, and define a CI/CD pipeline. The
pipeline will incorporate steps for building, analyzing code quality
(SonarQube), and security scanning (Trivy). This will help us to
automate the development process, ensuring secure and high-

quality applications.

Step 1: Install Jenkins on EC2

Before starting, ensure that we have a Java Development Kit (JDK)

installed, as Jenkins is built on Java and requires it to run.

Install Open)DK:
Verify Java Installation & Install Jenkins

sudo apt update

sudo apt install fontconfig openjdk-17-jre
java -version

openjdk version "17.0.8" 2023-07-18

OpendDK Runtime Environment (build 17.0.8+7-I
OpendDK 64-Bit Server VM (build 17.0.8+7-Deb-

Jenkins

sudo wget -0 /usr/share/keyrings/jenkins-keyrir
echo deb [signed-by=/usr/share/keyrings/jenkins
sudo apt-get update

sudo apt-get install jenkins

sudo systemctl start jenkins
sudo systemctl enable jenkins

Access Jenkins Web Interface: Open browser and navigate

to http://<EC2-public-IP>:8080

O ® 13.233.21.75:8080/login?from=%2F

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been written
to the log (not sure where to find it?) and this file on the server:

Please copy the password from either location and paste it below.

Administrator password

[

Jenkins Ul

To unlock Jenkins for the first time, get the initial password:

sudo cat /var/lib/jenkins/secrets/initialAdminf

Use this password to complete the setup. Once done, we will be
able
to install the suggested plugins and set up an admin user.

Step 2: Configure Jenkins Plugins

To integrate SonarQube, Docker, and NodeJS into Jenkins, we need

to install the necessary plugins.

Install Necessary Jenkins Plugins

Go to Manage Jenkins > Manage Plugins.

In the Available tab, search for and install the following plugins:

SonarQube Scanner (for SonarQube integration)
Docker (to integrate Docker builds)
NodeJS (if needed for Node.js builds)

Eclipse Temurin Installer (Install)

* Congufire Java and Nodejs in Global Tool

Configuration

Goto Manage Jenkins - Tools - Install JDK(17) and NodeJs(16)->
Click
on Apply and Save.

* OWASP Dependency-Check Configuration

in Jenkins

OWASP Dependency-Check is a tool that identifies project
dependencies and checks them for known, publicly disclosed
vulnerabilities. It scans project’s dependencies, such as libraries,
frameworks, and tools, to identify if any have known security

vulnerabilities.

In a DevSecOps pipeline, integrating OWASP Dependency-Check
helps automate the security scanning of project’s dependencies

during the CI/CD process.

Steps to Install and Configure OWASP Dependency-
Check in Jenkins

1. Install the OWASP Dependency-Check Plugin

Go to “Dashboard” in Jenkins web interface.
Navigate to “Manage Jenkins” > “Manage Plugins.”

Click on the “Available” tab and search for “OWASP
Dependency-Check Plugin.” Click on Install.

This plugin will allow Jenkins to scan the dependencies of the

project and report vulnerabilities.

2. Configure the OWASP Dependency-Check Tool
in Jenkins

Once the plugin is installed, we need to configure the OWASP
Dependency-Check tool in Jenkins:

Go to Jenkins Dashboard - Manage Jenkins -> Global Tool
Configuration.

Scroll down to the OWASP Dependency-Check section.

Click on Add Dependency-Check and provide the following
details:

Name: Give a name to the tool, e.g., DP-Check (this name will

be referenced in the pipeline).

Install automatically: Check this option to allow Jenkins to

download and install the tool automatically.

Directory: Optionally, we can specify a custom directory to
install the tool if needed.

Save configuration.

This configuration ensures that Jenkins has access to the

Dependency-Check tool for security scans.

3. Configure OWASP Dependency-Check in the
Jenkins Pipeline

To use the Dependency-Check tool within Jenkins pipeline, we will
integrate it into the stages of our pipeline configuration.
Here’s an example pipeline where OWASP Dependency-Check is

used to scan project dependencies for vulnerabilities:

pipeline {
agent any

tools {
jdk 'jdk17’
nodejs 'nodelé6'

environment {
SCANNER_HOME = tool 'sonar-scanner'

}
stages {
stage('Clean Workspace') {
steps {
cleanWs() // Cleans the worksp:
+
+
stage('Checkout from Git') {
steps {

git branch: 'main', url: '<URL:

+
stage('Install Dependencies') {

steps {
sh "npm dinstall"™ // Install Noc

}
+
stage ('OWASP Dependency-Check Scan') {
steps {
// Run Dependency-Check scan or
dependencyCheck additionalArgun
// Publish the Dependency-Checl}
dependencyCheckPublisher patter
+
+

* Install Docker Tools and Docker Plugins:

Go to “Dashboard” in Jenkins web interface.
Navigate to “Manage Jenkins” > “Manage Plugins.”
Click on the “Available” tab and search for “Docker.”
Check the following Docker-related plugins:

Docker

Docker Commons

Docker Pipeline

Docker API

docker-build-step

Click on the “Install without restart” button to install these

plugins.

Add DockerHub Credentials:

Go to “Dashboard” - “Manage Jenkins” - “Manage
Credentials.”

Click on “System” and then “Global credentials

(unrestricted).”
Click on “Add Credentials” on the left side.
Choose “Secret text” as the kind of credentials.

Enter DockerHub credentials (Username and Password) and

give the credentials an ID (e.g., “docker”).

Click “OK” to save DockerHub credentials.

Now, we have installed the Dependency-Check plugin, configured
the tool, and added Docker-related plugins along with DockerHub
credentials in Jenkins. We can now proceed with configuring
Jenkins pipeline to include these tools and credentials in the CI/CD

process.

uuuuuuu

Pipeline

Security Scanning with SonarQube & Trivy

In this phase, we’ll be configuring SonarQube and Trivy for
security scanning in the DevSecOps pipeline. This involves
integrating SonarQube with Jenkins for continuous code analysis

and using Trivy to scan Docker images for vulnerabilities.

Install and Configure SonarQube with Jenkins

SonarQube is a tool used for static code analysis to find bugs, code
smells, and security vulnerabilities. Integrating SonarQube with
Jenkins allows us to run security and quality scans automatically as
part of our CI/CD pipeline.

Here’s how to install and configure SonarQube with Jenkins:

Install and Run SonarQube in a Docker Container

First, run SonarQube in a Docker container on our EC2 instance:

docker run -d --name sonar -p 9000:9000 sonarqt

This command will pull the official SonarQube Docker image and
run it in detached mode (-d), mapping the container's port 9000
to the EC2 instance's port 9000.

We can access SonarQube at http://<EC2-public-IP>:9000

(default credentials are admin/admin).

Install SonarQube Plugin in Jenkins:

Open Jenkins in a web browser at http://<EC2-public-

IP>:8080 .
Go to Manage Jenkins > Manage Plugins.
In the Available tab, search for SonarQube Scanner.

Check the box next to SonarQube Scanner and click Install

without restart or with restart.
Configure SonarQube Server in Jenkins:

Once the plugin is installed, navigate to Manage Jenkins >

Configure System.

Scroll down to SonarQube Servers and click Add SonarQube.

Fill in the following details:

Name: Enter a name for the SonarQube instance (e.g.,

SonarQube).
SonarQube Server URL: http://<EC2-public-IP>:9000 .

Authentication Token: Generate an authentication
token from SonarQube:

Log in as admin and navigate to My Account > Security >

Generate Tokens.

Copy the token and paste it into Jenkins under Authentication
Token.

Click Save.

Configure SonarQube Scanner in Jenkins

Now, configure the SonarQube Scanner in Jenkins to analyze code
during the CI/CD pipeline.

Go to Global Tool Configuration:
Navigate to Manage Jenkins > Global Tool Configuration.

Scroll down to SonarQube Scanner and click Add SonarQube

Scanner.
Give it a name (e.g., SonarQube Scanner).

Select Install automatically to have Jenkins download and

install the scanner.

We can also choose Install from specific location if we have a

custom setup.

Click Save.

Configure Jenkins Pipeline for SonarQube Analysis

We can now configure a Jenkins pipeline to integrate SonarQube
scanning. Depending on whether we use a Freestyle Project or

Pipeline.

For Pipeline Job (Jenkinsfile): If we use a Jenkinsfile for pipeline as

code, here’s a basic pipeline setup:

pipeline {
agent any
environment {
SONARQUBE = 'SonarQube' // Name of Sone

}
stages {
stage('Build') {
steps {
script {

// Your build steps here

}
stage('SonarQube Analysis') {

steps {
script {
// Run SonarQube Scanner fc
withSonarQubeEnv ('SonarQube
sh "'mvn clean install s

O R 13.233.21.75:9000/dashboard?id=NetFlix w © L 08 =

BNetix ¢y pomano

Overview Issues Secuity Hotspots Measures. Code Actviy

QUALITY GATE STATUS © MEASURES

Overall Code.

Rolaity ()
O & rewvanoravin es secuity (&)
O @ tewsecurty Hospots © — oviowed Socurty Reviow (@)
O sseavant 0 @ newcososmeis Maintainabity (A)

— Coverage on O New Lines to cover — Duplications on 0 New Lines.

SonarQube Analysis

Install and Run Trivy for Docker Image Scanning

Trivy is a simple yet powerful security scanner for Docker images

that detects vulnerabilities and misconfigurations.

1. Install Trivy on EC2

Run the following command to install Trivy on EC2 instance:

sudo apt-get 1dinstall trivy

2. Scan Docker Image with Trivy

To scan Docker image for vulnerabilities, run the following

command:

trivy image <imageid>

Replace <image_id> with the ID or name of the Docker image you

want to scan (e.g., netflix:latest).

The output will show the vulnerabilities detected in the image,
with details like severity and affected packages.

Img scanning through trivy

Integrating SonarQube and Trivy into

Jenkins Pipeline

After setting up SonarQube and Trivy, we can integrate both tools
into Jenkins pipeline to scan the code and Docker images

automatically during the CI/CD process.

SonarQube: Scans the code for quality issues, bugs, code

smells, and security vulnerabilities.

Trivy: Scans Docker images for known vulnerabilities.

pipeline {
agent any
tools {
jdk '"jdk17'
nodejs 'nodel6'
+
environment {
SCANNER_HOME = tool 'sonar-scanner'

}

stages {
stage('clean workspace') {
steps {
cleanWs ()
}
}
stage('Checkout from Git') {
steps {
git branch: 'main', url: '<URL:
}
+
stage('SonarQube Analysis') {
steps {
withSonarQubeEnv('sonar-server'
sh ''!
SSCANNER_HOME /b1in/sonar-sc:
}
+
}
stage('Quality Gate') {
steps {
script {
waitForQualityGate abortPqy
}
}
+
stage('Install Dependencies') {
steps {
sh "npm 1dinstall"
+

stage('OWASP FS Scan') {
steps {
dependencyCheck additionalArgun
dependencyCheckPublisher patter

+
b
stage('TRIVY FS Scan') {
steps {
sh "trivy fs . > trivyfs.txt"
b
+
stage('Docker Build & Push') {
steps {
script {
withDockerRegistry(credent-
sh "docker build —--buil
sh "docker tag netflix
sh "docker push sirishe
+
+
+
b
stage('TRIVY Image Scan') {
steps {
sh "trivy image sirishassss/nei
b
+
stage('Deploy to container') {
steps {
sh 'docker run -d -p 8081:80 s-
+

Success 6 hr 46 min ago in 19 min

© Tool Install Stage 'Test'

@ clean workspace @ started 6 hr 27 min ago
(@ Checkout from Git R Queued o ns

© Sonarqube Analysis @ Took 32 s

© qualty gate @ success

@ Install Dependencies Sofviewloztplainheect
(© OWASP FS SCAN) Running tests...

@ TRIVY FS SCAN Print Message

© Docker Build & Push 0 Running tests...
@ TRIVY

© Deploy to container

© Build

© Test

Pipeline

Explore Organizations

siishassss / Repositories / netflx / General Using 0 0f 1 private repositories.

General Tags Buids Collaborators Webhooks Settings

sirishassss/netflix Docker commands
Last pushed ess than a minute ago To push a new tag to this repository:

s dsnerpiion) (@ st docker push sirishasses/netflix:tagnane

Addacategory (@ meowmere

Tags Automated builds
This repository contains 1 tag(s). i ¥
% ¥
Tag os Type Pulled Pushed
, Team and Read .
® latest Image a few seconds ago afew seconds ago

Seeall

Repository overview @ ncoucre

An overview describes what yourimage does and how to run it It e content

Img pushed to DockerHub

Phase 4: Monitoring

We can set up Prometheus and Grafana on the same EC2 instance

as Jenkins server. However, if the instance starts running slowly

because it’s handling both Jenkins and the monitoring tools, it’s

better to separate them.

Instances (1/2) i

etz @ G G s R

(Q Fndm: teribute or tag (ca) (Austtes v) 1 L]
B Namep v | instancein | instancestate v | instancetype ¥ | Status check Alarmstatus | Availability Zone ¥ | Public 1Pva DNs v | PublictPya... v | Elastict
O Netfixjenkins 1-0c8025c60cb72077b Qruming @ @ talarge @2/2 checks passec View alarms + ap-south-1a ec2.13-253-21-75.ap-s. 13.233.21.75 13253

[Monitoring 1-0eb83d9absbas707f @running @ @ t2medium © nitalizing Viewalarms + ap-south-1a c2-13-203-138-86.3p-.. 13.203.138.86 13.205.1

i-0eb83d9ab5ba8707f (Monitoring) 8 v
Details Status and alarms Monitoring Security Networking Storage Tags

v Instance summary info
Instance 1D

15 1oeba3doabsbas7o7f

1PV6 address

Hostname type
1P name: 1p-172-31-37-78.ap-south-1.compute Internal

Answer private resource DNS name
1Pva (A)

Public 1Pva address
8 13.205.1368.86 | open adress [1

Instance state
© running

Private IP DNS name (IPv4 only)

5] 1p-172-31-37-78.ap-south-1.computeInternal

Instance type
t2.medium

Private IPua addresses
1| 1725137.78

Public IPva DNS
ID) ec2-13-203-138-86.ap-south-1.compute.amazonaws.com |
open address [2

Elastic IP addresses.
153 13.203.138.86 (monitor) [Public IP]

Instance to setup Monitoring tools

> 59-0960033dcff2baded - monit o ®

5g-0960033dcff2b44e4 - monit Actions ¥
Details
Security group name Security group 1D Description vecin
0 monit 1T s9-0960033dcff2bades 10 launch-wizard-1 created I voc-0bacsdd12d63f0419 [2

2025-01-01T13:40:06.2172

ouner
@ 288761740575

Inbound rules Outbound rules | Sharing-new VPCassociations - new | Tags

Inbound rules (5) © (Cranage vass

(@ searen) 1 @
O/ Name v | security group rule D ¥ | 1P version v | Type v | Protocol v | Portrange v | source 9 | Descripti
[m] 59r-04185702491c04cc8 1Pva SSH TP 22 00.0.0/0
o 5gr-0b00889C1d6019b57 IPva Ccustom TCP Tcp 3000 0.00.0/0 Grafana
(u] 59r-0250d893b4ec19755 1Pva custom Tcp e 9050 0000/0 promethe
(m] 5gr-0b1fdoe70egecfsd7 1Pva custom TcP TcP 9100 0.000/0 node-exp
(u] sgr-Ocbddc2d157cass30 1Pva urte P 0 0000/0

This ports should be open in this server

- By moving Prometheus and Grafana to a different EC2 instance,
we
can make sure that monitoring doesn’t slow down Jenkins pipeline.
This way, we can keep both Jenkins and the monitoring tools

running smoothly without affecting each other.

Install Prometheus and Grafana:

- Set up Prometheus and Grafana to monitor application.

Prometheus is an open-source monitoring tool that collects and
stores metrics as time-series data. It helps monitor applications,
infrastructure, and services, providing powerful querying and

alerting capabilities.

Installing Prometheus:

First, create a dedicated Linux user for Prometheus and

download Prometheus:

sudo useradd --system --no-create-home --shell
wget https://github.com/prometheus/prometheus/r

Extract Prometheus files, move them, and create directories:

tar -xvf prometheus-2.47.1.linux-amd64.tar.gz
cd prometheus-2.47.1.linux-amd64/

sudo mkdir -p /data /etc/prometheus

sudo mv prometheus promtool /usr/local/bin/
sudo mv consoles/ console_libraries/ /etc/prome
sudo mv prometheus.yml /etc/prometheus/promethe

Set ownership for directories:

sudo chown -R prometheus:prometheus /etc/promet

Create a systemd unit configuration file for Prometheus:

sudo nano /etc/systemd/system/prometheus.serv-ic

Add the following content to the prometheus.service file:

[Unit]
Description=Prometheus
Wants=network-online.target
After=network-online.target

StartLimitIntervalSec=500
StartLimitBurst=5

[Service]

User=prometheus

Group=prometheus

Type=simple

Restart=on-failure

RestartSec=5s

ExecStart=/usr/local/bin/prometheus \
--config.file=/etc/prometheus/prometheus.yml
--storage.tsdb.path=/data \
--web.console.templates=/etc/prometheus/consc
--web.console. libraries=/etc/prometheus/consc

--web.listen-address=0.0.0.0:9090 \
--web.enable-1lifecycle

[Install]
WantedBy=multi-user.target

Brief explanation of the key parts in this prometheus.service file:

user and Group specify the Linux user and group under

which Prometheus will run.

ExecStart is where we specify the Prometheus binary path,
the location of the configuration file (prometheus.yml), the

storage directory, and other settings.

web.listen-address configures Prometheus to listen on all

network interfaces on port 9090.

web.enable-lifecycle allows for management of Prometheus
through API calls.

Enable and start Prometheus:

sudo systemctl enable prometheus
sudo systemctl start prometheus

Verify Prometheus’s status:

sudo systemctl status prometheus

We can access Prometheus in a web browser using server’s IP

and port 9090: http://<your-server-ip>:9090

« c O & 13.203.138.86:9090/targetsrsear o

© Prometheus

Targets
Al scrape pools ~ Al Unhealthy Collapse All Q.| Filter by endpoint o labels (T Tunneaihy |+ Heatny |

K8s (1/1 up)

Scrape
Endpoint State Labels Last Scrape Duration Error
hitp://3.110.62.164:9100/metrics: o 2.801s ago 14.810ms
jenkins (1/1 up)

Scrape
Endpoint State Labels Last Scrape Duration Error
hitp://13.233.21.75:8080/prometheus @ [instance="1.233.21.75:8080"] job="jenkins" 122265 ago 9.281ms
node_exporter (1/1 up)

Scrape
Endpoint State Labels Last Scrape Duration Error
http://13.203.138.86:9100/metrics m 4.770s ago 16.140ms
prometheus (1/1 up) 2=

Scrape
Endpoint State Labels Last Scrape Duration Error
hitp:/flocalhost:9090/metrics m 36245 ago 5.588ms

| have added the Targets in the prometheus

Installing Node Exporter:

Node Exporter is an open-source Prometheus exporter that

exposes hardware and OS-level metrics from Linux and Unix-based

systems. It collects data like CPU usage, memory, disk, and
network statistics, allowing Prometheus to monitor system

performance.

Create a system user for Node Exporter and download Node

Exporter:

sudo useradd --system --no-create-home --shell
wget https://github.com/prometheus/node_exporte

Extract Node Exporter files, move the binary, and clean up:

tar -xvf node_exporter-1.6.1.linux-amd64.tar.g:
sudo mv node_exporter-1.6.1.linux-amd64/node_e>
rm —-rf node_exporterx

Create a systemd unit configuration file for Node Exporter:

sudo nano /etc/systemd/system/node_exporter.set

Add the fOHOWing content to the node_exporter.service file:

[Unit]

Description=Node Exporter
Wants=network-online.target
After=network-online.target

StartLimitIntervalSec=500
StartLimitBurst=5

[Service]
User=node_exporter
Group=node_exporter
Type=simple
Restart=on-failure
RestartSec=5s
ExecStart=/usr/local/bin/node_exporter --collec
[Install]
WantedBy=multi-user.target

Enable and start Node Exporter:

sudo systemctl enable node_exporter
sudo systemctl start node_exporter

Verify the Node Exporter’s status:

sudo systemctl status node_exporter

We can access Node Exporter metrics in Prometheus.
Configure Prometheus Plugin Integration:

Integrate Jenkins with Prometheus to monitor the CI/CD

pipeline.
Prometheus Configuration:

To configure Prometheus to scrape metrics from Node
Exporter and Jenkins, you need to modify the prometheus.yml
file. Here is an example prometheus.yml configuration for

setup:

global:
scrape_interval: 15s

scrape_configs:
- job_name: 'node_exporter'
static_configs:
- targets: ['localhost:9100']

- job_name: 'jenkins'
metrics_path: '/prometheus'
static_configs:
- targets: ['<your-jenkins-ip>:<your-jen}

replace <your-jenkins-ip> and <your-jenkins-port> with the

appropriate values for your Jenkins setup.

Check the validity of the configuration file:

promtool check config /etc/prometheus/promethet

Reload the Prometheus configuration without restarting:

curl -X POST http://localhost:9090/-/reload

We can access Prometheus targets at: http://<your-

prometheus-ip>:9090/targets

Install Grafana

Grafana is an open-source data visualization and monitoring
platform that allows users to create interactive dashboards. It
integrates with various data sources, including Prometheus, to
visualize time-series data, metrics, and logs for monitoring

applications, infrastructure, and services.
Install Grafana on Ubuntu and Set it up to Work with Prometheus
Step 1: Install Dependencies:

First, ensure that all necessary dependencies are installed:

sudo apt-get update
sudo apt-get install -y apt-transport-https sof

Step 2: Add the GPG Key:

Add the GPG key for Grafana:

wget -q -0 - https://packages.grafana.com/gpg.}|

Step 3: Add Grafana Repository:

Add the repository for Grafana stable releases:

echo "deb https://packages.grafana.com/oss/deb

Step 4:Update the package list and install Grafana:

sudo apt-get update
sudo apt-get -y install grafana

Step 5: Enable and Start Grafana Service:

To automatically start Grafana after a reboot, enable the service:

sudo systemctl enable grafana-server

Then, start Grafana:

sudo systemctl start grafana-server

Step 6: Check Grafana Status:

Verify the status of the Grafana service to ensure it’s running

correctly:

sudo systemctl status grafana-server

Step 7: Access Grafana Web Interface:

Open a web browser and navigate to Grafana using server’s IP
address. The default port for Grafana is 3000. http://<your-server-

ip>:3000

We'll be prompted to log in to Grafana. The default username is

“admin,” and the default password is also “admin.”
Step 8: Change the Default Password:

When we log in for the first time, Grafana will prompt us to change
the default password for security reasons. Follow the prompts to

set a new password.
Step 9: Add Prometheus Data Source:

To visualize metrics, we need to add a data source. Follow these

steps:

Click on the gear icon (£}) in the left sidebar to open the

“Configuration” menu.
Select “Data Sources.”
Click on the “Add data source” button.

Choose “Prometheus” as the data source type.
In the “HTTP” section:

Set the “URL” to http://localhost:9090 (assuming

Prometheus is running on the same server).

Click the “Save & Test” button to ensure the data source is

working.

Step 10: Import a Dashboard:

To make it easier to view metrics, we can import a pre-configured

dashboard. Follow these steps:

Click on the “+” (plus) icon in the left sidebar to open the

“Create” menu.

Select “Dashboard.”

Click on the “Import” dashboard option.

Enter the dashboard code we want to import (e.g., code 1860).
Click the “Load” button.

Select the data source we added (Prometheus) from the

dropdown.

Click on the “Import” button.

We should now have a Grafana dashboard set up to visualize

metrics from Prometheus.

Grafana is a powerful tool for creating visualizations and
dashboards,

Configure Prometheus Plugin Integration:

Integrate Jenkins with Prometheus to monitor the CI/CD

pipeline.

O 8 13.203.138.86:3000 $43 & @ A =

Dashboards

Grafana dashboard after configuring Prometheus.

Home

Dashboards

O B 13.203.138.86: r 1 g @ L e 8=

© Last5 minutes ~

Job queue duration

JVM free memory. Memory Usage JVM Uptime Jenkins nodes offline CPU Usage

Unstable Jobs

Jenkins Performance and overview

c O & 1320313886 l 7 9100 %% L o8 =

Node Exporter(Metrics Overview)

Phase 6: Kubernetes Cluster and
Monitoring

EKS Cluster Setup

In this phase, we’ll set up a Kubernetes cluster with node groups in
console. This will provide a scalable environment to deploy and

manage applications.

© s> s

Amazon Elastic
Kubernetes Service

<

Clusters (1) e

ClEny)

c6alarge instances are nodes for the cluster

(@ rer ctusters) 1>
clusters
N Clustorname st v | Kubernetes version @ | supportperiod 9 | Upgrade policy o | croated v | bovider v
EnterpriseSubscrptions New (0 nem @ acive 1 © standard supportunti Noverber 26,2025 standard ehoursago s)
¥ Related services
Amazon ECR
Aws Batch
Conslesettings
Documentation (3
Submit eedback
EKS Cluster
e EKs > Clustars > Natflix o 6
Amazon Elastic < Netflix
Kubernetes Service
Clusters ¥ Cluster info ur
v Amazon EKS Anywhere Status Kubernetes version | info Support period Provider
it Sibeotons! e @ Active 131 (@ Standard support until November 26, 2025 Exs
v Related services Clusterheaith isues Upgrade nsights Node heslth ssues
Amezon R 0 5 ©0
Aws satch
Consisatingsi Overview Resources ~ Compute ~ Networking = Add-ons ~ Access | Observability = Updatehistory = Tags
Documentation [2
Submit feedback Details
APt server endpoint Openid connect provider URL created
=) ek] -south- 1B 6 hours ago
samazonawsom A4BDFCCD3115401D
Cluster v
(CHHess ey Cluster 1AM role ARN 5 amawsioksiap-south-1:2876174887 3 clustor/Netfix
B]
Viewin am 2 Platform version nfo
as1s
EKS Auto Mode 1.
£KS Auto Mods Nod 1AM ole
enabled
Kubernetes version settings
B vames v | instancein | instancestate v | mnstancetype v | Statuscheck | Alarmstatus | o | Publictevaons v | ubliciPva... v | Easticl
0 ofschfastres11357 Qruming @ @ coalarge @5/5 checks passec View alarms 4+ ap-south-ic €213-200138-162.p... 13200138062 -
[0 Netflix-jenkins. 1-0¢8025c60cb72077b. @Running @ @ t2large @ 2/2 checks passec View alarms 4 ap-south-1a ec2-13-233-21-75.ap-s... 13.233.21.75 132330
O Monitoring 1-0eb83d9absbag707f Running @ @ t2.medium @ 2/2 checks passec View alarms + ap-south-1a c2-13-203-138-86.2p-.. 13.205.138.86. 132051
(@ custer 107906110493969609 @ hunning @ @ coglarge @313 checks passec._ View alarms -+ ap-south-1a 2311062 1600p5.. 311062164 =

5g-09c9f7398d74e64c3 - eks-cluster-sg-Netflix-787338382 Actions ¥
Details
Security group name Security group 1D Description vecin
10 eks-cluster-sg-Netflix-787338382 0 sg-09¢9f7398d74e64c3 IE) EKS created security group applied to ENI that I voc-0bacsdd12d63f0419 [2

s attached to EKS Control Plane master nodes, as
well as any managed workloads.

ouwner inbound rules count Outbound rules count
0 288761748975 4 permission entries 1 permission entry
Inbound rules Outbound rules | Sharing-new VPCassociations-new | Tags

Inbound rules (4) @ ‘Manage tags

[Q ‘Search] 1 @
O Name v | Security grouprule D ¥ | 1P version v | Type v | Protocol 9 | Portrange v | Source % | Description
(m) s9r-079df8562f5649fc1 - Alltraffic All Al 50:09¢9f7398d74e64c3
(u] 50r-0ab85d059208635b3 1Pv4 Custom TCP e 50007 0000/0 app-node-port
o sgr001csbfase2ezbsf Alltraffic Al Al $0-078B61e3345922f ...

(u] sgr-019729bf61d242b30 1P4 Custom TCP e 9100 0000/0 node-exporter
Ports

Setting Up AWS CLI and Configuring Credentials

Before accessing the EKS cluster, we need to install and configure
the AWS CLI. Follow these steps:

Install AWS CLI:

First, we'll need to install the AWS CLI on our machine. We can do

this by running the following commands:

sudo apt-get update
sudo apt-get install awscli
aws —--version

Configure AWS CLI with Credentials:

Next, we need to configure AWS credentials (which will allow us to

access our AWS account). Run the following command:

aws configure

It will prompt us to enter the following information:

AWS Access Key ID: We can find this in our AWS account
(under IAM > Users > [your user] > Security Credentials >
Access keys).

AWS Secret Access Key: This is also available under IAM user’s

security credentials.

Default region name: Enter the region where EKS cluster is

located, such as ap-south-1 Or us-east-1 .

Default output format: We can choose between json , text ,

or table (typically json isfine).
Access the EKS Cluster:

Now the AWS CLI is set up, we can use it to access EKS cluster by

updating kubeconfig file. Run the following command:

aws eks update-kubeconfig -—-name "Cluster—-Name'

This will configure kubectl to interact with our EKS cluster.

$ aws sks update kubeconflg - -name netfl\x reg\on "ap- south 1
Added new context arn:aws:eks:ap-south-1:288761748973:cluster/netflix to /home/krupakar/ kube/config
B $

Accessing EKS cluster by updating kubeconfig file

Monitor Kubernetes with Prometheus

Prometheus is a powerful monitoring and alerting toolkit, and
we’ll use it to monitor Kubernetes cluster. Additionally, we’ll install
the node exporter using Helm to collect metrics from cluster

nodes.

Installing Helm

Helm is a package manager for Kubernetes that simplifies the
deployment and management of applications and services. It
allows us to easily install and configure applications using “charts”
(pre-configured Kubernetes resources). To install Prometheus
Node Exporter (and other services) on Kubernetes cluster, we’ll

need to have Helm install

Install Helm on Local Machine or Server:

sudo
sudo
curl
sudo

apt-get update

apt-get 1dinstall -y apt-transport-https
https://baltocdn.com/helm/signing.asc | st
apt-get install -y helm

Install Node Exporter using Helm

To begin monitoring Kubernetes cluster, we'll install the

Prometheus Node Exporter. This component allows us to collect

system-level metrics from cluster nodes. Here are the steps to

install the Node Exporter using Helm:

Add the Prometheus Community Helm repository:

helm repo add prometheus-community https://pron

2. Create a Kubernetes namespace for the Node Exporter:

kubectl create namespace prometheus—-node-expori

3. Install the Node Exporter using Helm:

helm dinstall prometheus-node-exporter promethet

ter,app. kube /instance=pronetheus-node-exporter” -o jsonpath="{.itens[0].

prometheus-node-exporter installation throuh helm

Add a Job to Scrape Metrics on nodeip:9001/metrics in
prometheus.yml:

Update Prometheus configuration (prometheus.yml) to add a new
job for scraping metrics from nodeip:9001/metrics. We can do this

by adding the following configuration to your prometheus.yml file:

- job_name: 'Netflix(job name)'
metrics_path: '/metrics'
static_configs:

- targets: ['nodelIp:9100']

Reload or restart Prometheus to apply these changes to

configuration.

To deploy an application with ArgoCD, we can follow these steps:

Deploy Application with ArgoCD
Install ArgoCD:

We can install ArgoCD on Kubernetes cluster by following the

instructions provided in the EKS Workshop documentation.

S kubectl create namespace argocd

namespace/argocd created

S kubectl apply -n argocd -f https://raw.githubusercontent.con/argoproj/argo-cd/v2.4.7/manifests/install.yaml
customresourcede n.aplextensions.kss.1o/applications.argoproj.io created
customresourcede n.aplextensions.kss.io/applicationsets.argoproj.io created
custonresourcedefinition.apiextensions.k8s.1o/appprojects.argoproj.io created
serviceaccount/argocd- on-controller created
serviceaccount/argocd-applicationset-controller created
serviceaccount/argocd-dex-server created
serviceaccount/argocd- ications-controller created
serviceaccount/argocd-redis created
serviceaccount/argocd-repo-server created
serviceaccount/argocd-server created
role.rbac.authorization.k8s.lo/argocd-application-controller created
role.rbac.authorization.kss -applicationset-controller created
role.rbac.authorization.kss -dex-server created
role.rbac.authorization -notifications-controller created
role.rbac.authorization -server created

Argocd installation

https://medium.com/r/?url=http%3A%2F%2FEKS%20Workshop
https://medium.com/r/?url=http%3A%2F%2FEKS%20Workshop

Load balancers (1/1) @ Create load balancer

Elastc Load a ales your load balancer capacity automaticalyIn esponse to changes I Incoming traffic
(a Fe] 1

Name v | oNsname v | sate v | veco v

@ ass2crsco7edsansabs. [= = Vpc-0b4c5dd12d63f0419
P

Load balancer: a342cf3c97ed84154b98e9678fa23856

Details | Listeners = Networkmapping | Security | Healthchecks = Targetinstances Monitoring | Attributes | Tags

Details

Load balancer type status vec Date created

Classic 20f 3 Instances I service Vpe-Obacsdd12d63f0419 [2 January 4, 2025, 21:40 (UTC+05:50)
Schame Hosted zone ones

Internet-facing 2ZPOTRAFLXTNZK 0a9b81248d65f4809 [7 ap-south-1a (aps1-

subnet-0ad2sasdbieeeceda 2 ap-south-b (apsi-
az3)

Subnet-0¢67a0801b24064f7 [ap-south-1c (aps1-
a22)

LB

1. Set the GitHub Repository as a Source:

2. After installing ArgoCD, we need to set up the GitHub
repository as a source for our application deployment. This
typically involves configuring the connection to our repository
and defining the source for our ArgoCD application. The

specific steps will depend on our setup and requirements.

3. Create an ArgoCD Application:

+ name : Set the name for application.

+ destination : Define the destination where application should

be deployed.

+ project : Specify the project the application belongs to.

source : Set the source of application, including the GitHub
repository URL, revision, and the path to the application
within the repository.

syncPolicy : Configure the sync policy, including automatic

syncing, pruning, and self-healing.

NAME

argocd-server LoadBalance

‘adnin:login' logged in suc

c oa 195317.3p-south-1.elb o ® L e =
polications | Qnetlx APPLICATION DETAILS TREE
PP HEALT CURRENT SYNG STATUS WORE LAST SYNG RESULT MORE
Healthy @ Synced To HEAD (a87419 Sync OK To a8741%
Y e
== @ a [0
= netlapp
. < et appsie
s node.exparter i .
O @ synced 3
ndportsice T flopp7B778676004bShe ¢
O © outofsync 0 v :
neticapp : netlcapp-787786 pod))
vo :
o - — netfixopp 767786768 lgnim 3
- W . :
O @ Healthy 6
O OProgressing 0
O @egraded 0
[O suspended 0
(O @ Missing 0
O © Unknown 0

Argocd

$ kubectl get svc argocd-server -n argocd

USTER-IP EXTERNAL- TP
10.100.97.136 a1ad5385bb2e9456599327d553193343-882925492. ap-south-1.elb. anazonaws .con
$ argocd login SARGOCD_SERVER --username admin --password SARGO_PWD --insecure

PORT

s AGE
80:30952/TCP,443:32744/TCP 21n

.

cessfully

Context 'a1ad5385bb2e9450599327d553193343-882925492. ap-south-1.elb.anazonaws.con' updated

21ad5385bb2e9450599327d5
£6gKNIQO9ZG35rQC

NAME

netflix-app-787786768c-h9jsw
8 qrnp

netflix-app-7877867

NAME
1-01aefabd0e56c8b6
1-ebfbodc1127718ef4

Read
Read

TYPE
ClusterIp
NodePort

NAME
kubernetes
netflix-app

NAME

kube-node-lease
kube-public
kube-systen
pronetheus-node-expor ter

READY
2/2

NAME
netflix-app

STATUS

UP-TO-DATE

echo SARGOCD_SERVER

53193343-882925492.ap-south-1.elb. amazonaws.. con

echo SARGO_PHD

$ kubectl get po
STATUS RESTARTS
[

o 5
ctl get nodes
VERSTON
v1.31.1-eks-1b3e656
v1.31.1-eks-1b3e656

$ kubectl get svc
EXTERNAL-IP
1 <none>
215.212 <no
$ kube
GE

<none>
<none>

y
y
PORT(S) AGE
443/TCP

6:30007/TCP

CLUSTER-IP
10. 16
10.160.

o 8
ne> 8 92s
ctl get ns
STATUS
Active
Active
Active
Active
Active
Active

S kubectl get deployment
AVAILABLE

4. Access the Application

+ To Access the app make sure port 30007 is open in our security
group and then open a new tab paste NodeIP:30007, our app
should be running.

€ > C O & 3.110.62.164:9100

Node Exporter

Prometheus Node Exporter

Version: (version=1.8.2, branch=HEAD, revision=f1e0e8360aa60b6ch5e5cc1560bed348fc2c1895)

o Metrics

To access metrics pubi-p of node inst along with port

« C O & 3.11062.164: o L @ 9 =

)f MMydjst Movies

The Price l

Largo Winch, devastatex i i It realizes
that if he finds those respo
he'll see his son again:

| BV (D More Info

Popular Movies

Accessing application

Cleanup

Cleanup AWS EC2 Instances:

- Terminate AWS EC2 instances that are no longer needed.

