
 Certified Kubernetes Security Specialist (CKS)

 Setting the Base
Kubernetes is one of the most popular container orchestration tools in the
industry.

It is used extensively in many medium to large-scale organizations.

PPT Release Date: 12th March 2025

 Major Challenge - Security is Neglected

Security is often neglected due to which there are so many breaches.

A simple EC2 with open security group can teach you many things.

Security Group

Allow ALL from ALL

 Results

96% failure rate

Bruteforce from
across the world.

 616 failed attempts

 Kubernetes Security is Ignored

Most organizations deploying Kubernetes cluster ignore the security aspect of it.

There is big demand of individuals who know has expertise in K8s security.

 Introducing CKS

The Certified Kubernetes Security Specialist (CKS) certification demonstrates
competence on best practices for securing Kubernetes platforms.

 What this Course is All About?

This is a certification-specific course aimed at individuals who intend to gain the
Certified Kubernetes Security Specialist certification.

Thorough
Preparation

 Certification is Beneficial

We will be covering all the domains for the Certified Kubernetes Security
Specialist certification.

1. Cluster Setup
2. Cluster Hardening
3. System Hardening
4. Minimize Microservice Vulnerabilities
5. Supply Chain Security
6. Monitoring, Logging and Runtime Security

 The Exciting Part
We have an exam preparation section to help you get prepared for the exam.

We also have practice tests available as part of the course.

 Prerequisite for CKS

Having a CKA certification is a prerequisite for CKS certification.

CKA need not be active, even if it is expired, it will be acceptable.

Certified Kubernetes
Administrator

Certified Kubernetes
Security Specialist

 Lab Based Exams
CKS exam is a lab-based exam where you will have to solve multiple scenarios
presented to you.

Challenge 1

Challenge 2

Challenge 3

Challenge 4

 About Me
● DevSecOps Engineer - Defensive Security.
● Teaching is one of my passions.
● I have total of 16 courses, and around 400,000+ students now.

Something about me :-

● Certified Kubernetes [Security Specialist, Administrator, Application Developer]
● HashiCorp Certified [Terraform Professional [Vault and Consul Associate]
● AWS Certified [Advanced Networking, Security Specialty, DevOps Pro, SA Pro, …]
● RedHat Certified Architect (RHCA) + 13 more Certifications
● Part time Security Consultant

 About the Course and Resources

 1 - Aim of This Course
The primary aim of this course is to learn.

Certified Kubernetes Security Specialist

 2 - PPT Slides PDF

ALL the slides that we use in this course is available to download as PDF.

We have around 360+ slides that are available to download.

 3 - PPT Version

The course is updated regularly and so are the PPTs.

We add the PPT release date in the PPT itself and the lecture from which you
download the PPTs.

 4 - Our Community (Optional)
You can join our Discord community for any queries / discussions. You can also
connect with other students going through the same course in Discord
(Optional)

Discord Link: https://kplabs.in/chat

Category: #cks

 5 - Course Resource - GitHub
All the code that we use during practicals have been added to our GitHub page.

Section Name in the Course and GitHub are same for easy finding of code.

 6 - Code Editor

Visual Studio Code is the default code editor used for this course.

 Basics of CIS Benchmarks

 Understanding with Analogy
Think about how we secure our homes - we lock doors, install security systems,
and follow certain safety practices.

 Setting the Base
In the digital world, organizations face a similar challenge but on a much larger
scale. They have many computers, servers, and systems that need protection.

 Understanding the Challenge

Different organizations were following different security practices, some good
and some not so effective.

This inconsistency can create vulnerabilities.

Security Standard

Installed Anti-Virus

VPN Enabled

Security Standard

Install Anti-Virus

VPN Enabled

Server Hardening

Security Standard

Install Anti-Virus

VPN Enabled

Server Hardening

Regular VA/PT

SIEM + 24/7 SOCOrganization 1
Organization 2

Organization 3

 Introducing CIS Benchmarks

CIS Benchmarks are best-practice security guidelines developed by the Center
for Internet Security (CIS).

They provide step-by-step instructions on how to secure systems

 CIS Benchmarks

AWS, Azure, GCP

Docker, Kubernetes

Linux, Windows, macOS

Nginx, Apache, IIS

Android, iOs

 Tools that Assesses CIS Benchmarks
There are many tools available in the industry that can check whether an
organization has implemented CIS Benchmark correctly.

 Point to Note - Part 1

While valuable, implementing CIS Benchmarks, it might not cover 100% of what
needs to be done.

CIS Benchmarks evolve with new technologies and new threats.

 CIS Benchmarks Organization Specific
Security Benchmark

First Step Second Step

 Point to Note - Part 2

Some recommendations might conflict with business needs and
organization-specific security standards.

Example:

CIS Benchmark talks about password complexity for local Linux passwords.

Organization might use AD / IPA instead of local passwords

 CIS Benchmarks for Kubernetes

 Setting the Base

CIS Benchmarks give a specific set of guidelines suitable to Kubernetes and
ensure the hardened Kubernetes environments.

 Understanding the Structure

CIS Benchmark covers both the Control Plane Node + Worker Node
components.

 CIS Benchmarks

Areas Covered Sub-Components

Control Plane Node API, Controller Manager, Scheduler,
ETCD

Worker Node Kubelet, Kube-Proxy

Pod Security Standards

CNI, Secrets, General

 Shared Responsibility Model

Lot of providers offer managed Kubernetes offerings.

Since customers do not have full control over the cluster, the security
responsibility is divided.

 Point to Note
If you are using a managed Kubernetes cluster, there are separate set of CIS
Benchmark for Kubernetes available that takes into account the Customer
responsibilities.

 Tools to Analyze Kubernetes Benchmark

There are many tools like kube-bench that checks whether Kubernetes is
deployed securely by running the checks documented in the CIS Kubernetes
Benchmark.

 Our Lab Setup

 Setting the Base
Throughout this course, we will be learning about security aspects of Kubernetes
components in detail.

For this, we need a test environment to practice.

 Lab Setup

For our labs, we will making use of following setup:

You can decide to use cloud provider of your choice.

Operating System Cloud Provider

Ubuntu 24 LTS Digital Ocean

 Point to Note - OS

It is recommended to use the same OS version that we use in practicals.

We have intentionally used Ubuntu LTS (Long Term Support)

 Why Digital Ocean?

1. Reasonably priced servers and pay per hour.

2. Good Amount of Credits for New Users (Referral) - $100-$200

3. Keep it simple approach.

 Important Etcd Security Guidelines

 Area of Focus

To secure etcd, we'll focus on three key areas.

ETCD

Areas of Focus

Plain Text Data Storage

TLS Encryption

Certificate Based Authentication

 1 - Plain Text Data Storage
By default, etcd stores data in plain text.

This means sensitive data (like Secrets) can be read directly from the disk.

API Server

Hey Etcd, store following Secret:

 admin=secret123#

Secret Stored.

admin=secret123#

ETCD

 Hacker is Happy

If an attacker gets access to etcd, they can read secrets in plain text.

admin=secret123#

Etcd Dump

Attacker

 2 - TLS Encryption

The data in-transit between API server and ETCD can also be intercepted.

You have to ensure that this data is also protected.

API Server

ETCD

encrypted-channel

 3 - Authentication

Without authentication, any client can connect to etcd and modify data.

It is important to have authentication in place for etcd.

API Server

ETCD

Fetch me secret of
database-creds

Dude, who are you!

Authenticate First

 Basic Authentication Workflow

API Server

ETCD

Fetch me secret of
database-creds

etcd-user:etcd-password

Sure, here is the data:

admin=secret-password

 Types of Authentication

Etcd supports various approaches to authenticate.

We will take example of username/passwords and Certificates.

Feature Username / Passwords Certificates

Security Level Lower Higher (certificates are harder to forge)

Ease of Use Easier to configure and manage More complex to set up and maintain

Best Use Case Simple setups, development
environments

Production environments, high-security
applications

 4 - Certificate Based Authentication

In this approach, certificates are used to verify the identity.

API Server

ETCD

Sure, here is the data:

admin=secret-password

Fetch me secret of
database-creds

 Certificate Authority

 Setting the Base
Kubernetes components, such as the API server, kubelet, controller manager
should communicate with each other over secure channel.

These components need a mechanism to verify each other's identity.

 Certificate Authority

Certificate Authority is an entity which issues digital certificates.

Key part is that both the receiver and the sender trusts the CA.

 Two Important Use-Cases

There are two important use-case where CA certificate will be used.

1. To generate TLS certificates for secure communication.

2. To generating certificates for client / component for authentication.

 Workflow - Issuance of Signed Certificates

 Certificate Authority

We are going to discuss workflow on how Certificate Authority issues signed
certificates.

 Understanding the Workflow

For the entire workflow to work, there are three steps:

1. Generate the CA Certificate and Key

2. Generate the Certificate Signing Request for Components and Clients.

3. Sign the CSR using CA creds to get the final certificate.

 Part 1 - Generate Certificate Signing Request

In this step, we generate client key and certificate signing request (CSR).

 Part 2 - Sign CSR using CA Creds

In this step, we send CSR to the certificate authority. CA will verify and sign it to
provide final client certificate.

 Part 3 - Authenticate
The signed certificates can be used for client authentication as well as for secure
communication over TLS.

 Etcd - Transport Security with HTTPS

 Understanding the Challenge
If the traffic between the API server and etcd is not encrypted, an attacker
sniffing the network can easily fetch all of the data in plain text.

API Server

ETCD

non-encrypted secret traffic

 Setting the Base

You can configure etcd to listen on HTTPS so that the communication between a
client and etcd is encrypted and secured.

API Server

ETCD

encrypted-channel

 Step 1 - Generate Certificate for etcd

We have to generate a certificate for the etcd component.

This certificate will be used for HTTPS communication.

 Step 2 - Start Etcd using HTTPS

Configure etcd to start listening on HTTPS and use the certificates.

 Important Flags

Flags Description

--cert-file=<path> Specifies the path to the server's SSL/TLS certificate file.

--key-file=<path> Specifies the path to the private key file corresponding to the certificate.

--advertise-client-urls Specifies the URLs that etcd should advertise to clients for client
communication. Example: https://<IP>:2379

--listen-client-urls Specifies the URLs on which etcd listens for client requests. Example:
https://0.0.0.0:2379

 Mutual TLS Authentication

 Case Study of 3 Cats
My wife takes care of 1 street cat, and she asked me to feed the cat (brownish)
while she is out of the city for the next 1 month.

I started to feed a cat regularly, but later realised it was an impersonator cat.

Original Cat Impersonators

 Setting the Base
Client wants to store super sensitive data in etcd.

An attacker can launch his own etcd that act as an impersonator to store
sensitive data.

Client

Original etcdImpersonator etcd

Store sensitive data

Stored successfully.

secret-data

 Solution - Mutual TLS
Mutual TLS (mTLS) is a security protocol that ensures both the client and the
server verify each other's identities before establishing a connection.

Both the client and the server have digital certificates issued by a trusted
Certificate Authority (CA)

Client

Original etcd

I am genuine client. Here
is my signed certificate

I am genuine etcd. Here
is my signed certificate

 Requirement for mTLS to Work
Both the sender and receiver should have their certificates.

These certificates must be signed by trusted Certificate Authority that both
sender and receiver trusts.

Client

Certificate of Client
Certificate of Server

 Handshake Process
1. The client connects to the server.

2. The server presents its certificate to the client.

3. The client verifies the server's certificate.

4. The client presents its certificate to the server.

5. The server verifies the client's certificate.

6. If both verifications pass, a secure, encrypted connection is established.

 Mutual TLS Authentication - Practical

 Workflow Steps
1. Certificate Authority.

2. Etcd certificate signed through the Certificate Authority.

3. Client certificate signed through the Certificate Authority.

4. Both etcd and client will trust the Certificate Authority (1)

 Important Flags - etcd server

Flags Description Importance

--cert-file and
--key-file

To start etcd with HTTPS Secure communication

--client-cert-auth Enables client certificate authentication. Requires clients to provide a valid
certificate signed by the trusted

CA.

--trusted-ca-file Path to Certificate Authority certificate file. Etcd uses this file to verify the
authenticity of client certificates.

--advertise-client-urls Specifies the URLs that etcd should advertise
to clients for client communication. Example:

https://<IP>:2379

--listen-client-urls Specifies the URLs on which etcd listens for
client requests. Example: https://0.0.0.0:2379

 Important Flags - etcdctl (client)

Flags Description Importance

--cacert Path to Certificate Authority certificate file.
etcdctl uses this to verify the

server's certificate. This ensures
you're connecting to the correct
etcd server and not a malicious

one.

--cert-file and --key-file To authenticate with etcd using client
certificates.

 Manage etcd using Systemd

 Understanding the Challenge
At this stage, we have been starting etcd manually from CLI

This is a good approach during test, but not ideal for Production.

 Systemd to Manage etcd

Systemd simplifies process management, handling tasks like starting, stopping,
and restarting services, including automatically starting etcd on server reboot.

 API Server Security

 Setting the Base
The Kubernetes API Server acts as the gateway for managing and interacting
with a Kubernetes cluster.

When we interact with your Kubernetes cluster using the kubectl, the request
goes to API server component.

 Etcd Component Setup
Our etcd server is configured to require certificate-based authentication and
operates over HTTPS for secure communication.

etcdAPI Server

Listen on HTTPS

Certificate Authentication Required

Connect using Certificate

 Connecting API Server to ETCD

To connect API Server with etcd component, there are two essential steps that
need to be performed.

1. Generate certificates for API Server from trusted Certificate Authority.

2. API Server should connect to etcd over HTTPS endpoint.

 Encryption Providers

The API Server should encrypt sensitive data, such as Kubernetes Secrets,
before storing it in etcd.

API Server

Hey Etcd, store following Secret:

 #@23: $*$)%$

Secret Stored.

#@23: $*$)%$

ETCD

 TLS Encryption

Since users and other components may connect to the API Server over
potentially insecure networks, it is critical to ensure that all traffic is encrypted.

API server should listen on HTTPS endpoint.

API Serverencrypted-channel

Client

 Auditing
Auditing provides a security-relevant, chronological set of records documenting
the sequence of actions in a cluster.

It is important to have an appropriate audit policy to capture relevant logs.

 Other Security Configurations
Several additional security configurations should be implemented, which we will
discuss in upcoming dedicated videos.

Some of these include:

● Admission Control

● Authorization Mode

● Authentication

Access Control

 K8s Security

Overview of Access Control

 knowledge portal

When a request reaches the API, it goes through several stages, illustrated in the following diagram:

Authentication Authorization Admission
 Controllers K8s object

Stage 1: Authentication

 knowledge portal

There are multiple ways in which we can authenticate. Some of these include:

Authentication Modes Description

X509 Client Certificates Valid client certificates signed by trusted CA.

Static Token File Sets of bearer token mentioned in a file.

Stage 2: Authorization

 knowledge portal

After the request is authenticated as coming from a specific user, the request must be authorized.

Multiple authorization modules are supported.

Authorization Modes Description

AlwaysDeny Blocks all requests (used in tests).

AlwaysAllow Allows all requests; use if you don’t need authorization.

RBAC Allows you to create and store policies using the
Kubernetes API.

Node A special-purpose authorization mode that grants
permissions to kubelets

Stage 3: Admission Controllers

 knowledge portal

An admission controller is a piece of code that intercepts requests to the Kubernetes API server
prior to persistence of the object, but after the request is authenticated and authorized.

Controllers that can intercept Kubernetes API requests, and modify or reject them based on
custom logic.

Static Token Authentication

 Let’s Authenticate

Overview of Static Token Authentication

 knowledge portal

The API server reads bearer tokens from a file when given the --token-auth-file=SOMEFILE
option on the command line.

 API Server

token user

A342GHS3 alice

BPRQRMS bob

users.csv

Connecting with API Server using Token

 knowledge portal

When using bearer token authentication from an http client, the API server expects an
Authorization header with a value of Bearer <token>

 API Server

token user

A342GHS3 alice

BPRQRMS bob

users.csv

"Authorization: Bearer A342GHS3#"

Client

Downsides of Token Authentication

 Let’s Authenticate Securely

Downside of Token Authentication

 knowledge portal

The tokens are stored in clear-text in a file on the apiserver

Tokens cannot be revoked or rotated without restarting the apiserver.

Hence, it is recommended to not use this type of authentication.

X509 Client Certificates - Authentication

 Let’s Authenticate Securely

Authentication Types

 knowledge portal

There are multiple ways in which we can authenticate. Some of these include:

Authentication Modes Description

X509 Client Certificates Valid client certificates signed by trusted CA.

Static Token File Sets of bearer token mentioned in a file.

How Things Work

A request is authenticated if the client certificate is signed by one of the certificate authorities that
is configured in the API server.

 knowledge portal

 kube-apiserver

Client

 knowledge portal

Downsides of X509 Client Certificates

 Let’s Authenticate Securely

Disadvantage of Certificate Based Authentication

 knowledge portal

The private key is stored on an insecure media (local disk storage).

Certificates are generally long-lived. Kubernetes does not support certificate revocation related
area.

Groups are associated with Organization in certificate. If you want to change the group, you will
have to issue a new certificate.

Authorization

 K8s Security

Overview of Access Control

 knowledge portal

When a request reaches the API, it goes through several stages, illustrated in the following diagram:

Authentication Authorization Admission
 Controllers K8s object

Authorization

 knowledge portal

After the request is authenticated as coming from a specific user, the request must be authorized.

Multiple authorization modules are supported.

Authorization Modes Description

AlwaysDeny Blocks all requests (used in tests).

AlwaysAllow Allows all requests; use if you don’t need authorization.

RBAC Allows you to create and store policies using the
Kubernetes API.

Node A special-purpose authorization mode that grants
permissions to kubelets

Important Pointers - Certificates

 knowledge portal

Within a certificate, there are two important fields:

Common Name (CN) and Organization (O)

openssl req -new -key alice.key -subj "/CN=alice/O=admins" -out alice.csr

The above commands create CSR for the username alice belonging to admins group.

System Masters Group in Kubernetes

 knowledge portal

There is a group named system:masters and any user that are part of this group have an
unrestricted access to the Kubernetes API server.

Even if every cluster role and role is deleted from the cluster, users who are members of this group
retain full access to the cluster.

Important Note

 knowledge portal

Membership of system:masters is particularly dangerous when combined with Kubernetes client
certificate authentication model, as Kubernetes does not currently provide any mechanism for
client certificates to be revoked.

Encryption Provider Config

Encrypting Data in ETCD

Challenge with Plain Text Storage in ETCD

 knowledge portal

Data like Kubernetes Secrets are stored in plain-text in ETCD.

Implementing Encryption

 knowledge portal

You can associate an encryption key at kube-apiserver level so that the data can be encrypted before
being stored at the ETCD.

 knowledge portal

 Before Encryption After Encryption

Encryption Provider Configuration

 knowledge portal

The kube-apiserver process accepts an argument --encryption-provider-config that controls how
API data is encrypted in etcd.

Encryption providers

 knowledge portal

Encryption Providers Encryption Strength Speed

Identity None N/A N/A

aescbc AES-CBC with PKCS#7 padding Strongest Fast

secretbox XSalsa20 and Poly1305 Strong Faster

kms Uses envelope encryption
scheme

Strongest Fast

Important Pointers

 knowledge portal

By default, the identity provider is used to protect secrets in etcd, which provides no encryption.

You can make use of KMS provider for additional security.

The older secrets would still be in an unencrypted form.

Auditing

 Let’s Audit Securely

Overview of Auditing

 knowledge portal

Auditing provides a security-relevant, chronological set of records documenting the sequence of
actions in a cluster.

The cluster audits the activities generated by users, by applications that use the Kubernetes API,
and by the control plane itself.

● what happened?
● when did it happen?
● who initiated it?
● on what did it happen?
● from where was it initiated?
● to where was it going?

 knowledge portal

Audit Policy

Audit policy defines rules about what events should be recorded and what data they should
include.

 knowledge portal

Audit Levels Description

None don't log events that match this rule.

Metadata Log request metadata (requesting user, timestamp, resource, verb, etc.)
but not request or response body.

Request Log event metadata and request body but not response body.

RequestResponse Log event metadata, request and response bodies.

Important Flags

 knowledge portal

Audit Configuration Description

-audit-policy-file Path to the file that defines the audit policy configuration.

-audit-log-path Specifies the log file path that log backend uses to write audit
events.

--audit-log-maxage Maximum number of days to retain old audit log files

--audit-log-maxbackup Maximum number of audit log files to retain

--audit-log-maxsize Maximum size in MB of the audit log file before it gets rotated

 Setting Up kubeadm

 Understanding the Need

kubeadm allows us to provision a secure Kubernetes cluster quickly.

 Two Part to Remember

First important component is Kubernetes Master Node

Second component is Kubernetes Worker Node

 Taints and Tolerations

 Understanding Taint
Taint is a property added to a node that repels certain pods

 Worker Node 1 Worker Node 2

Pod-1

Sorry Bro

 Understanding Tolerations
In order to schedule into the worker node with taint, you need a special pass.
This special pass is called Toleration.

 Worker Node 1 Worker Node 2

Pod-1

special-pass

Welcome!

 Defining a Taint

You can use the kubectl taint node command to add a taint to a node.

A taint consists of a key, value (optional), and effect.

 Effects in Taints

Effects Description

NoSchedule Prevents scheduling of new pods on the node unless they tolerate the taint.

PreferNoSchedule Tries to avoid scheduling new pods on the node, but does not enforce it strictly.

NoExecute Evicts existing pods and prevents new pods from being scheduled on the node.

 Defining Tolerations - Sample Manifest

 Defining Toleration - Structure

Component Description Important Pointers

key The taint key that the toleration
applies to. This is used to match

a taint on a node.

operator Defines the relationship
between the key and the value.

- Equal: The toleration matches if the key and
value are equal.

- Exists: The toleration matches if the key exists,
regardless of the value.

effect Specifies the effect of the taint.

value The value associated with the
key that the toleration applies to.

Any string value that matches the value of the
taint

 Revising the Concept

Taints repel pods, and tolerations allow exceptions.

A pod without a toleration for a node's taint will not be scheduled on that node.

Taints are applied to nodes, while tolerations are applied to pods.

 Kubelet Security

 Basics of Kubelet API

The Kubelet API provides a set of endpoints that allow users to interact with the
Kubelet to retrieve information about the node, running pods, and container
statuses.

 Accessing Kubelet API
The Kubelet API is available on each node at:

https://<node-ip>:10250/

 Understanding the Challenge

If kubelet is misconfigured, the Kubelet API can be accessible to everyone over
internet without authentication.

 Anonymous Authentication

Anonymous authentication in Kubernetes allows unauthenticated requests to the
Kubelet API.

It is primarily used as a fallback mechanism when no other authentication
method is provided.

 Authorization Mode
Kubelet supports different authorization modes to control which requests are
allowed.

Feature AlwaysAllow WebHook

Security Level Low (No authorization) High (Centralized
authorization)

Use Case Development, testing Production, fine-grained
access control

Authorization Mechanism Allows all requests Uses an external webhook
to decide

Recommended for
Production?

No Yes

 Client Certificates

When a client (such as kube-apiserver or other components) connects to the
kubelet API, it must present a TLS certificate.

The kubelet verifies the presented client certificate against the CA certificate
stored defined through clientCAfile option.

 HTTPS for Kubelet
The --tls-cert-file and --tls-private-key-file allow you to specify path of certificate
and key used for serving HTTPS request at kubelet.

If --tls-cert-file and --tls-private-key-file are not provided, a self-signed certificate
and key are generated.

 Verify Platform Binaries

 Basic of Hashing

Hashing is a one-way function that maps data of arbitrary size (often called the
"message") to a bit array of a fixed size (message digest)

 Verify Platform Binaries

To verify the integrity of the archive, you can take a hash of the archive file and
compare it with the hash value posted in the official website.

 kubernetes.tar.gz

sha512sum kubernetes.tar.gz

5d713b5c9a822d5e

 Ingress

 Challenge with Basic Configuration

When we use a LoadBalancer Service Type, the Load balancer forwards traffic
to a NodePort associated with a single service.

Service

Pod-1

Pod-2

3
1
5
1
4

Worker Node

External User

kplabs.internal

 Multiple Service Scenario

In a scenario where you have multiple services for different websites, you might
have to create multiple sets of load balancers for each service. This is
expensive.

example-service Pod-1

Pod-2kplabs-servicekplabs.internal

example.internal

 Ideal Approach

In an ideal approach, you want a single load balancer to handle requests for
multiple services and a logic that can route traffic accordingly.

example-service Pod-1

Pod-2kplabs-service

r
u
l
r
s

example.internal

 Introducing Ingress
Ingress acts as an entry point that routes traffic to specific services based on
rules you define.

example-service Pod-1

Pod-2kplabs-service

i
n
g
r
e
s
s

example.internal

 Reference Diagram

 Components of Ingress
There are two sub-components of Ingress:

1. Ingress Controller
2. Ingress Resource

example-service Pod-1

Pod-2kplabs-service

Controller

Rules Forward

example.internal example-service

kplabs.internal kplabs-service

 Components of Ingress
An Ingress Controller is a component that implements the rules defined in
Ingress resources.

Ingress Controller is a running application within your cluster.

Controller

Rules Forward

example.internal example-service

kplabs.internal kplabs-service

 Reference Workflow Diagram

 Key Difference Summarized

Ingress Ingress Controllers

API object (rules, configuration) Application (implements the rules)

Defines routing rules Enforces routing rules, manages traffic flow

 Ingress with TLS

 Understanding the Challenge

A HTTP based connection to the ingress controller is not a secure.

Pod-1kplabs-serviceController

User

HTTP

 Ingress with TLS

TLS ensures secure communication between the client and the server

You can secure the connection by setting up TLS at Ingress level.

Pod-1kplabs-serviceControllerencrypted

User

HTTPs

 Point to Note
The certificates are stored in Kubernetes as Secrets, and the Ingress resource is
configured to use these secrets for HTTPS traffic.

Secret

Certificate

Private Key

 Reference Screenshot

 Nginx Ingress - SSL Redirect Annotation

 Setting the Base
By default the controller redirects HTTP clients to the HTTPS port 443 if TLS is
enabled for that Ingress.

NGINX assumes that once TLS is defined in the Ingress, all traffic should be
secure.

 Change the Setting

To modify this behavior, you can add following annotation to ingress resource.

nginx.ingress.kubernetes.io/ssl-redirect: true

http://nginx.ingress.kubernetes.io/force-ssl-redirect

 Overview of Network Policies

 Understanding the Basics

By default, Kubernetes allows all traffic between pods within a cluster. Network
Policies help you lock down this open communication.

Pod-1 Pod-2 Pod-3

Kubernetes Cluster

 Understanding the Challenge
If a application inside any Pod gets compromised, attacker can essentially
communicate with all other Pods easily over the network.

Pod-1 Pod-2 Pod-3

Kubernetes Cluster

Compromised

 Ideal Scenario
You only want Pods that have genuine requirement to connect to other pods to
be able to communicate.

test-pod app-pod db-pod

Kubernetes Cluster

 Introducing Network Policies
Network Policies are a mechanism for controlling network traffic flow in
Kubernetes clusters.

test-pod

app-pod

db-pod

Source Destination Effect

app-pod db-pod Allow

test-pod ALL Deny

Network Policies

 Types of Rules
There are two types of rules supported as part of Network policies:

1. Ingress Rules (Inbound Rule)

2. Egress Rules (Outbound Rule)

nginx-pod

Ingress Egress

 Supported Filtering Entities
The entities that a Pod can communicate with are identified through a
combination of the following three identifiers:

1. Other pods
2. Namespaces
3. IP Blocks

 Example 1 - Pod Selector
Allow pods with label of role=app to connect to pods with labels of
role=database

 Example 2 - NameSpace Selector
Allow Pods from Security namespace to connect to Pods in Prod namespace.

 Example 3 - ipBlock
Allow Pods from production namespace to connect to only 8.8.8.8 IP address
outbound.

 Support for Network Policy

Not all Kubernetes network plugins (CNIs) support NetworkPolicy.

The ability to enforce NetworkPolicies is a feature that must be implemented by
the CNI plugin

Some Network Plugins like Calico, Cilium, etc supports Network policy.

Some Network plugins like kubenet, Flannel does NOT support network Policy

 Network Policy and Managed K8s Cluster

Most managed Kubernetes services (like AKS, EKS, GKE) come with a CNI that
supports NetworkPolicy by default.

However, it's always a good idea to check the documentation for your specific
service to confirm.

 Structure of Network Policy

 Sample Network Policy

 Basic Mandatory Fields

As with all other Kubernetes config, a NetworkPolicy needs the following fields:

● apiVersion
● kind
● metadata

 Contents of Spec
NetworkPolicy spec has all the information needed to define a particular network
policy in the given namespace.

● podSelector
● policyTypes
● Ingress
● egress

 1 - Pod Selector
Each NetworkPolicy includes a podSelector which selects the grouping of pods
to which the policy applies.

The example network policy applies to all pods that has label of env=production

 Point to Note

An empty podSelector selects all pods in the namespace.

 2 - Policy Types
Each NetworkPolicy includes a policyTypes list which may include either
Ingress, Egress, or both.

The policyTypes field indicates whether or not the given policy applies to
inbound traffic to selected pod, outbound traffic from selected pods, or both

 3 - Ingress
Inside ingress, you can use various combinations of podSelector, nameSpace
selector etc to define the rules.

Inbound traffic for Pods with label of
env=production will be allowed from
pods with label env=security.

 4 - Egress
Inside Egress rule, you can use various combinations of podSelector,
namespaceselector, ipBlock etc to define the rules.

Allow Outbound Traffic only to IP
address of 8.8.8.8 for Pods having
label of env=production

 Role of from and to

from
Used in an Ingress rule.

Specifies the sources of incoming traffic allowed to the selected pods.

Sources can be other pods, namespaces, or IP blocks.

to Used in an Egress rule.

Specifies the destinations of outgoing traffic allowed from the selected pods.

Destinations can be other pods, namespaces, or IP blocks

 Practical - Network Policies

 Example 1 - Block All Ingress and Egress
Since no specific rules are defined for ingress or egress, Kubernetes denies all
traffic by default

 Points to Note - podSelector

podSelector { }

This means the policy applies to all pods in the namespace because the selector
is empty (matches all pods).

 Example 2 - Allow Ingress Traffic
This policy allows all incoming traffic (ingress) to the selected pods.

 Points to Note

ingress:
 - { }

The empty {} means that there are no restrictions on the source of the traffic
(any source is allowed).

 Example 3 - Isolate Suspicious Pod
This policy blocks all ingress and egress access to pod with role=suspicious.

 Example 4 - PodSelector
Allow pods with label of role=app to connect to pods with labels of
role=database

 Example 5 - Namespace Selector
Allow Pods from Security namespace to connect to Pods in Prod namespace.

 Example 5 - Reference Code

 Example 6 - ipBlock
Allow Pods from production namespace to connect to only 8.8.8.8 IP address
outbound.

 Example 6 - Reference Code

 Network Policies - Except, Port and Protocol

 Except
The except field in a Kubernetes NetworkPolicy allows you to define exceptions
to a broader rule.

Following policy allows ingress for cidr range of 172.17.0.0/16 except the range
of 172.17.1.0/24

 Reference Screenshot - Entire Policy

 Ports and Protocol

When writing a NetworkPolicy, you can target a port or range of ports.

 Reference Screenshot - Entire Policy

 Kubeadm - Structure

 Basic Structure
The /etc/kubernetes directory is critical, as it holds all the essential manifest files
and certificates needed for the functioning of your Kubernetes cluster's
components.

 Certificates
kubeadm generates certificate and private key pairs for different purposes.
Certificates are stored by default in /etc/kubernetes/pki.

 Certificates Mounted in Static Pods
The generated certificates are mounted in appropriate static pods using volume
mounts.

 Kubeconfig file - Admin
A kubeconfig file for kubeadm to use itself and the admin,
/etc/kubernetes/admin.conf

With this file, the admin has full control (root) over the cluster.

 Kubeconfig file - Kubelet
A kubeconfig file for kubelet to use, /etc/kubernetes/kubelet.conf

This certificate have the following:

● CN system:node:<hostname-lowercased>
● Be in the system:nodes organization

 Kubeconfig file - Controller Manager
A kubeconfig file for controller-manager is /etc/kubernetes/controller-manager.conf

This file should have the CN system:kube-controller-manager

 Kubeconfig file - Scheduler
A kubeconfig file for scheduler, /etc/kubernetes/scheduler.conf

This file should have the CN system:kube-scheduler

 Static Pod manifests for Control Plane

Static pod manifest files for control-plane components are primarily defined in path
of /etc/kubernetes/manifests

 Properties for Control Plane Components - 1

All static Pods are deployed on kube-system namespace.

 Properties for Control Plane Components - 2

All static Pods get tier:control-plane and component:{component-name} labels.

 Kubelet Configuration

Kubelet is configured on the host system and is managed using systemd.

Path to kubelet config file: /var/lib/kubelet

 Mark Control Plane Node

As soon as the control plane is available, kubeadm executes following actions:

1. Label the control-plane node with node-role.kubernetes.io/control-plane=""

2. Taints the node with node-role.kubernetes.io/control-plane:NoSchedule

http://node-role.kubernetes.io/master=

 Kubeadm - Troubleshooting

 Setting the Base

You should be familiar with troubleshooting kubeadm based clusters.

 Kubelet Logs
You can check the kubelet logs using journalctl

 Pod Specific Logs
You can check Pod specific logs under /var/log directory.

 Pod Specific Logs - Better Way
You can directly check the /var/log/containers that has symlink to the latest log
file for Pods.

 Authentication in Kubernetes

 Basics of Authentication

Authentication is the process of verifying a user's identity before granting them
access to a system or resource

 Accessing Resources in Kubernetes

To access resources in Kubernetes cluster, we have to authenticate first.

Kubernetes

Create 10 Pods

Dude, who are you?
Authenticate first!

 Analogy of AWS
In AWS, you can authenticate using multiple set of methods.

1. Username and Passwords.
2. Access Key and Secret Keys

 Point to Note - Kubernetes

Kubernetes does not manage the user accounts natively.

Normal users cannot be added to a cluster through an API call

Kubernetes

kubectl create user alice

 Authentication in Kubernetes
Kubernetes supports several authentication methods such as:

Client Certificates, Static Token Authentication, Service Account Tokens etc

Kubernetes

token user

A342G alice

BPRQ bob

 Create 5 pods

My token is A342G

 Example 1 - Static Token File

The API server reads bearer tokens from a file provided.

The token file is a csv file with a minimum of 3 columns: token, user name, user
uid

 Example 2 - X509 Certificates

Uses the client certificates for authentication.

 Categories of Users
Kubernetes Clusters have two categories of users:

1. Normal Users (for humans)

2. Service Accounts (for apps)

Kubernetes

Normal users

Service Accounts

 Authorization

 Basics of Authorization

Authorization is the process of determining what an authenticated user or entity
is allowed to do

 AWS Account

New AWS User

Delete All the Servers

You don’t have permissions

 Authorization in Kubernetes
Kubernetes authorization takes place following authentication.

Usually, a client making a request must be authenticated (logged in) before its
request can be allowed.

Authentication Authorization
Kubernetes
Resources

 Authorization Modes
The Kubernetes API server may authorize a request using one of several
authorization modes. Some of these include:

Authorization Mode Description

AlwaysAllow
This mode allows all requests, which brings security risks.

Use this authorization mode only for testing.

AlwaysDeny
This mode blocks all requests.

Use this authorization mode only for testing.

RBAC Defines set of permissions based on which access is granted.
Recommended for Production.

 Point to Note

In Kubernetes, if the authorization mode is not explicitly defined in the API server
configuration, the default mode used is AlwaysAllow.

 Role-Based Access Control (RBAC)

 Setting the Base

RBAC allows us to control what actions users and service accounts can perform
on resources within your cluster.

 Basic Workflow

In the below diagram, we have a list of users in Table 1 and list of permissions in
Table 2.

We have to bind these together for users to get the defined permissions.

Permissions

List Pods

Create, Delete
Secrets

Users

Alice

Bob

Bind

 3 Important Concept

Role defines a set of permissions.

Subjects can be user, groups, service account.

RoleBinding ties the permission defined in the role to subjects like Users.

Role

List Pods

Create, Delete
Secrets

Subjects

Users

Group

Service Account

RoleBinding

 Introducing Roles
A Role always sets permissions within a particular namespace.

 Introducing RoleBinding
RoleBinding associates a Role with a user, group, or service account within a
specific namespace.

It grants the defined permissions to the subjects in that namespace.

RoleBinding

 ClusterRole and ClusterRoleBinding
Similar to Role and RoleBinding, but the main difference is that the permissions
granted by a ClusterRole apply across all namespaces in the cluster.
ClusterRoleBinding connects ClusterRole to Subjects.

ClusterRoleBinding

 Practical - Role and RoleBinding

 Basic Structure of Role Manifest

The following image represents the basic structure of the first part of a Role
manifest file.

 Defining Rules in Role Manifest
The rules field is a list of policies that define the permissions granted by the
Role.

Each rule specifies which actions (verbs) are allowed on which resources (API
objects).

 1 - API Groups
apiGroups specify which API group the rule applies to.

Kubernetes APIs are categorized into different API groups.

API Groups Description

"" (empty string) Refers to the core API group (e.g., pods, services, configmaps etc).

apps Refers to the apps API group (e.g., deployments, daemonsets,replicasets)

batch Includes Jobs, CronJobs.

networking.k8s.io Handles Ingress and Network Policies.

 2 - Resources

This field specifies which Kubernetes resources the rule applies to.

These resources belong to the specified API group.

 3 - Verbs

Verb specifies what actions (operations) are allowed on the specified resources.

Common Verbs Description

get Read a specific resource.

list List all resources of that type.

create Create a new resource.

delete Modify an existing resource.

update Remove a resource.

watch Observe changes to a resource.

 Structure - RoleBinding
While defining RoleBinding, we have to define subjects and Role Reference.

 Generate Role Manifest File

 Generate Role Binding Manifest File

 Practical - ClusterRole and ClusterRoleBinding

 Structure of ClusterRole Manifest

 Structure of ClusterRoleBinding Manifest

 Generate ClusterRole Manifest File

 Generate ClusterRoleBinding Manifest File

 Service Accounts

 Understanding the basics
Kubernetes Clusters have two categories of accounts:

● User Accounts (For Humans).
● Service Accounts (For Applications)

 Kubernetes Cluster

 Importance of Credentials

To connect to Kubernetes cluster, an entity needs to have some kind of
authentication credentials.

K8s Cluster

Pod A

User

 Different Type of Credentials

Humans will use User Accounts to connect to Cluster.

Pods / Applications will use Service Accounts to connect to Cluster.

K8s Cluster

Pod A

User Accounts

Access via Service Accounts

 Service Accounts in K8s Cluster

Various different components of Kubernetes uses service accounts to
communicate with the cluster

 Service Accounts and Pods

Let’s assume that a Service Account is associated with Pod A.

Pod A can use the token associated with the service account to perform some
actions on Kubernetes cluster.

Pod AService Account

 Service Accounts - Points to Note

 Default Service Account

When you create a cluster, Kubernetes automatically creates a ServiceAccount
object named default for every namespace in your cluster.

 Service Account and Permissions

Each Service Account in Kubernetes can be associated with certain
permissions.

When Pod uses the service account, it can inherit the permissions.

Service Account

Permissions

Read Access to Logs

Full Access to Pods

 Point to Note

The default service accounts in each namespace get no permissions by default
other than the default API discovery permissions that Kubernetes grants to all
authenticated principals if role-based access control (RBAC) is enabled

 Assigning Pods to Service Accounts

If you deploy a Pod in a namespace, and you don't manually assign a
ServiceAccount to the Pod, Kubernetes assigns the default ServiceAccount for
that namespace to the Pod

Pod ADefault Service
Account

 Accessing Service Account Token

Service Account Token gets mounted inside the Pod inside the /var/run directory
and can easily be accessed using cat command.

 Connecting to K8s using Token

Using the Service Account Token, you can connect to the Kubernetes Cluster to
perform operations.

 Points to Note

Even though 2 Pods use same service account, each Pod will receive different
set of tokens.

Default Service
Account

Pod A

Pod B token=5678

token=1234

 Service Account Security

 Understanding the Challenge
When you create a pod without specifying a service account, the Pod is
automatically assigned the default service account in the same namespace.

If the default service account is granted excessive permissions, all pods using it
will inherit those privileges, potentially leading to security risks.

PodKubernetes

Mount Default service
account Token

 Reference Screenshot

 Opt Out of Auto-Mounting Credentials

We can opt out of automounting the credentials inside the Pods in two different
approaches.

 no-credentials-mounting

 Service Account Level Pod Level

 Disabling Auto-Mount at the Service Account Level

We can opt out of automounting API credentials for a service account by setting
automountServiceAccountToken: false on the service account:

 Disabling Auto-Mount at the Pod Level

This can be achieved by adding adding automountServiceAccountToken: false in
Pod Spec.

 Precedence of Auto-Mounting Settings
What if:

1. Auto Mounting is set to False at Service Account Level

2. Auto Mounting is set to True at POD Level

 Answer - Clash Situation

If both the pod specification and the service account define
automountServiceAccountToken, the pod-level setting takes precedence.

 Version Skew Policy

 Setting the Base
In Kubernetes, different components (such as the API server, kubelet, etc)
interact with each other across various versions.

To ensure compatibility and stability, Kubernetes follows a Version Skew Policy
that defines how versions of these components can differ while still maintaining
a functional cluster.

 Understanding the Challenge

Version skew happens whenever two components of a software system
communicate, but they aren't running at exactly the same version

While some level of skew is allowed, excessive differences between versions
can lead to compatibility issues, failures, or unexpected behaviors.

API Server
v1.33

kubectl
v1.26

 Kubernetes Versioning Basics

Kubernetes versions are expressed as x.y.z, where x is the major version, y is
the minor version, and z is the patch version.

Format: <MAJOR>.<MINOR>.<PATCH> (e.g., v1.32.2)

Major Version Minor Version Patch Version

1 32 2

 kube-apiserver and kubelet
Component Version Skew

kube-apiserver
In highly-available (HA) clusters, the newest and oldest kube-apiserver

instances must be within one minor version.

If newest kube-apiserver is at 1.32 other kube-apiserver instances are
supported at 1.32 and 1.31

kubelet

kubelet must not be newer than kube-apiserver.

kubelet may be up to three minor versions older than kube-apiserver

Example:

kube-apiserver is at 1.32
kubelet is supported at 1.32, 1.31, 1.30, and 1.29

 kube-proxy

Component Version Skew

kube-proxy
kube-proxy must not be newer than kube-apiserver.

kube-proxy may be up to three minor versions older than kube-apiserver

Example:

kube-apiserver is at 1.32

kube-proxy is supported at 1.32, 1.31, 1.30, and 1.29

Controller Manager, Scheduler, Cloud Controller Manager

Component Version Skew

Controller
Manager

Scheduler

Cloud Controller
Manager

Must not be newer than the kube-apiserver instances they communicate with.

They are expected to match the kube-apiserver minor version, but may be up
to one minor version older (to allow live upgrades).

Example:

kube-apiserver is at 1.32

kube-controller-manager, kube-scheduler, and cloud-controller-manager are
supported at 1.32 and 1.31

 kubectl

Component Version Skew

kubectl

kubectl is supported within one minor version (older or newer) of
kube-apiserver.

Example:

kube-apiserver is at 1.32

kubectl is supported at 1.33, 1.32, and 1.31

 Overview - Upgrading kubeadm Clusters

 Setting the Base

It is important to upgrade minor versions sequentially (1.31 -> 1.32 -> 1.33 etc.)

kubeadm
v1.32

kubeadm
v1.31

 Approach for Upgradation

If you plan to upgrade the Kubernetes version, you have to do it for both the
Control Plane Node and Worker Nodes.

Upgrade Worker
Node

Upgrade Control
Plane Node

 Determine Version to Upgrade to

Find the latest patch release for Kubernetes using the OS package manager:

 kubeadm upgrade [plan, apply] - Control Plane

kubeadm upgrade plan check which versions are available to upgrade to and
validate whether your current cluster is upgradeable

Run the kubeadm upgrade apply to upgrade the version.

 Point to Note

The kubelet component is not upgraded during the kubeadm upgrade apply
operation.

You have to manually upgrade kubelet.

 Projected Volumes

 Setting the Base

Projected volumes lets you combine several different volume sources into a
single volume mount in your pod.

Secret

configMap

serviceAccountToken

downwardAPI

clusterTrustBundle

Pod

Single Mount

Volume Sources

 Reference Screenshot

 Linux Capabilities

 Setting the Base
Processes on a Unix-like system run primarily with the permissions of either a
user account, or with root permissions.

Process

Root User

Normal User

 Understanding the Challenge
This approach of root user having unlimited privilege and a normal user having
limited privilege is not a good enough model.

User John wants to start the process that requires certain privileged access.
Most organizations will grant John full access using sudo.

Process

Binds itself to Port 900

Perform I/O port operation

sudo start process

John

 Introducing Linux Capabilities
Linux Capabilities are used to allow binaries (executed by non-root users) to
perform privileged operations without providing them all root permissions.

It also allows process started with root to have limited privilege.

Process
(Privileged)

Binds itself to Port 900

Perform I/O port operation

start process

John

Capabilities

CAP_NET_BIND_SERVICE

CAP_SYS_RAWIO

 Reference Workflow

root

The first square represents root without capabilities before Linux kernel 2.2.

The second square represents root with full capabilities.

The third square represents root with only a few capabilities enabled.

 Capabilities Available

There are wide range of capabilities available.

Capabilities Description

CAP_NET_BIND_SERVICE Bind to ports <1024

CAP_NET_RAW Use raw sockets

CAP_SYS_TIME Modify system clock

CAP_SYS_ADMIN Perform various administrative tasks

CAP_DAC_OVERRIDE Bypass file permissions

The ping command uses raw sockets to send and receive ICMP packets.

Allowing any user to create arbitrary network packets could be a security risk

Instead of giving ping full root access, ping is given only the cap_net_raw
capability, which is the minimum required to send and receive ICMP packets.

 Example - Ping

ping

Since CAP_NET_RAW capability is added to ping, even a non-privileged user
will be able to run it without any admin privileges.

 Example - Ping

ping

Linux Capability

CAP_NET_RAW

Non-Privileged User

 Practical - Linux Capabilities

 Simple Use-Case

We have a program that binds to Port 900.

In Linux, the Port 1-1023 require root privileges

Aim is to allow non-privileged user to also run the program.

Program
 [Binds on Port 900]

Root User

 Using Right Capability
The CAP_NET_BIND_SERVICE capability in Linux allows a process to bind to
privileged network ports (those below 1024) without requiring root privileges.

We will associate this capability with the program.

Program
 [Binds on Port 900]

Non-Privileged User

Linux Capability

CAP_NET_BIND_SERVICE

 Reference Screenshot - Without Capability

The binary of bind_port_900 does NOT have any capabilities.

If a non-privileged user tries to run it, it will result in permission denied..

 Reference Screenshot - With Capability

After the cap_net_bind_service capability is added, a non-privileged user will be
able to start the process that binds to Port 900.

 Security Context

 Understanding the Challenge

Many times, the containers run with root user privileges.

In case of container breakouts, an attacker can get full access to the host
system.

Container Host Files

Host System

Access

 Running Container with Non Root User

If the container runs with non-root privileges, it will be unable to modify the
critical host files and will have limited access to the host system.

Container Host Files

Host System

Access
Denied

 Introduction to Security Context
A security context defines privilege and access control settings for a Pod or
Container.

Run as non-privileged user

 Comparison Table

Field Description Use-Case

runAsUser
Specifies the user ID (UID) a container's

process runs as.
Use when you want the container to run as a specific

user rather than the default (commonly root).

runAsGroup Specifies the primary group ID (GID) a
container's process runs as.

Use when you want the container's primary group to
be a specific GID.

fsGroup Specifies a group ID (GID) for
volume-mounted files. Files created in

mounted volumes will be owned by this GID.

Use when you need to control file permissions for a
shared volume (e.g., for multiple containers in a Pod).

 Privileged Pods

 Setting the Base
Kubernetes, by default, enforces strong security boundaries to isolate containers
from the host system and from each other.

Host Operating System

Docker

container-1 container-2

 Introducing Privileged Pods
Certain workloads require elevated privileges to interact directly with the host
system's resources or kernel capabilities.

This is where "Privileged Pods" come into play.

Host Operating System

Docker

container-1 container-2

Interact with Host
Resources

 Why use Privileged Pods?

Tasks that require direct hardware access, such as loading kernel modules,
manipulating network devices (e.g., creating custom network interfaces), or
accessing specific device files.

Some networking tools that need deep system access to manage network
interfaces, routing tables, or firewalls.

 Example - Access to Host Device

Non-Privileged Pod (Top) vs Privileged Pods (Bottom)

 Example - dmesg

Non-Privileged Pod (Top) vs Privileged Pods (Bottom)

 Deploying a Privileged Pod
You can configure a Pod to be privileged by setting privileged: true in
securityContext.

 Point to Note
Privileged containers are given all Linux capabilities, including capabilities that
they don't require.

In most cases, you should avoid using privileged containers, and instead grant
the specific capabilities required by your container using the capabilities field in
the securityContext field

 Set Capabilities for a Container

 Setting the Base
By default, Kubernetes runs containers with a restricted set of capabilities.

If your application requires additional privileges (e.g., binding to privileged ports,
modifying network settings), you must explicitly grant them.

 Setting the Base
In Kubernetes, Linux capabilities are managed under the securityContext in
pod.spec

 Add and Drop Section
The add section grants specific capabilities

The drop section removes capabilities to minimize security risks.

 Points to Note

Only add the capabilities your application actually needs.

Use drop: ["ALL"] First: Then explicitly add only required capabilities.

 Admission Controllers

 Setting the Base
Admission controllers that allow you to intercept, validate, and potentially modify
requests to the Kubernetes API server before they are persisted as objects in
etcd

Authentication Authorization Admission
Controller K8s Object

 Types of Admission Controllers

Admission Controller Type Description

Validating These can only allow or deny requests based on custom rules.

Mutating These can modify requests before they are processed, in
addition to allowing or denying them.

 Example 1 - NamespaceAutoProvision
By default, if you attempt to create resources in a nonexistent namespace, you
will immediately encounter an error.

The NameSpaceAutoProvision admission controller inspects all incoming
requests for namespaced resources and checks whether the referenced
namespace exists.

If the namespace does not exist, the controller automatically creates it.

 Example 2 - PodSecurity
The PodSecurity Admission controller enforces Pod Security Standards.

By enforcing Pod Security Standards, it ensures that pods deployed in your
cluster comply with defined security best practices.

PodSecurity Admission
Controller

Hell Naw. No Privileged
containers

Is this good?

 ImagePullPolicy

 Setting the Base
Whenever you create a Pod in kubernetes, the kubelet component interacts with
the runtime (docker, containerd) to pull the container image from registry.

kubelet container-runtime

Container Registry

Pull
Images

Worker Node

 Introducing ImagePullPolicy

The ImagePullPolicy tells Kubernetes when to pull an image from a registry.

kubelet container-runtime

Images Pulled

 Available ImagePullPolicy Settings

Values Description

Always Pulls the latest image from container registry.

IfNotPresent Pulls the image only if it isn’t already present on the node.

Never Never pull the image. Instead, it assumes the image is already available on
the node.

 Setting ImagePullPolicy

We can explicitly specify the imagePullPolicy for the Pod.

 Clarification Point - AlwaysPullImages

Every time the kubelet launches a container, the kubelet queries the container
image registry to resolve the name to an image digest.

If the kubelet has a container image with that exact digest cached locally, the
kubelet uses its cached image; otherwise, the kubelet pulls the image with the
resolved digest, and uses that image to launch the container.

 Default Image Pull Policy

If you omit the imagePullPolicy field, and you don't specify the tag for the
container image, imagePullPolicy is automatically set to Always

If you omit the imagePullPolicy field, and you specify the tag for the container
image that isn't latest, the imagePullPolicy is automatically set to IfNotPresent

 Point to Note

You should avoid using the :latest tag when deploying containers in production
as it is harder to track which version of the image is running and more difficult to
roll back properly.

Instead, specify a meaningful tag such as v1.42.0 and/or a digest.

 Admission Controller - AlwaysPullImages

 Understanding the Challenge

Private Registry

secret-image secret-pod
 pull
user/pass

If a sensitive container image is downloaded to a worker node using valid
credentials, an unauthorized person can later create a new Pod using that same
image with imagePullPolicy set to 'Never', bypassing the need for authentication
credentials.

second-pod

Images Pulled secret-image

Launch Container

 Introducing AlwaysPullImages

This admission controller modifies every new Pod to force the image pull policy
to Always

This is useful in a multitenant cluster so that users can be assured that their
private images can only be used by those who have the credentials to pull them.

Without this admission controller, once an image has been pulled to a node, any
pod from any user can use it by knowing the image's name

 Pod Security Standard

 Simple Example
It is often seen that users launch privileged pods in production namespaces
even when they are not required.

Pod-1 Pod-2 Pod-3

privileged: true

Production Namespace

 Example - Security Standard Set
The security team has defined the following standards for the production
namespaces.

This is more of an advisory, and enforcement is not 100% achieved.

Security Standards

Containers must run as non-root users.

HostPath volumes must be forbidden.

Seccomp profile must not be set to Unconfined.

AppArmor profile is applied by default.

No Privileged Containers

Production
Namespace

Advisory

 Ideal Approach
In an ideal approach, you want any attempt to circumvent the security standards
set by the security team to be blocked automatically.

Production
Namespace

Requirement

Only allow Pods that follow Security standards.

Launch Privileged Pods

 Introducing Pod Security Standards

Pod Security Standards are a set of guidelines established by Kubernetes to
ensure that Pods running in a namespace meet specific security requirements.

 Policies in Pod Security Standard

The Pod Security Standards define three different policies.

These policies range from highly-permissive to highly-restrictive.

Policies Description

Privileged Unrestricted policy, providing the widest possible level of permissions.
Allows privilege escalations

Baseline Minimally restrictive policy which prevents known privilege escalations.

Restricted Heavily restricted policy, following current Pod hardening best practices.

 1 - Privileged Policy

The Privileged policy is purposely-open, and entirely unrestricted.

The Privileged policy is defined by an absence of restrictions

 2 - Baseline Policy

The Baseline policy is aimed at ease of adoption for common containerized
workloads while preventing known privilege escalations.

Targeted at application operators and developers of non-critical applications

Operations Not Allowed (Reference purpose)

Sharing the host namespaces.
Privileged Pod

HostPath volumes and HostPorts

 3 - Restricted Policy

The Restricted policy is aimed at enforcing current Pod hardening best
practices, at the expense of some compatibility.

Targeted at operators and developers of security-critical applications, as well as
lower-trust users.

Examples

Everything from Baseline Policy +
Containers must be required to run as non-root users.

Containers must not set runAsUser to 0
Seccomp profile must be explicitly set to one of the allowed values.

Pods with Privileged Policy Pods with Restricted Policy

The policies can be defined at a namespace level.

You can also apply it at a cluster level.

 Where to Define Policy

Production Namespace Restricted Policy

Development Namespace Privileged Policy

The Pod Security Admission (PSA) controller is a built-in admission controller in
Kubernetes that enforces the Pod Security Standards (PSS).

When a pod is created, PSA checks if it complies with the security policies set at
the namespace level.

 Pod Security Admission

 Practical - Pod Security Standards

 Overall Workflow
We will create 3 namespaces for each policy level as part of PSP.

We will launch ideal pod that fits PSS restrictions.

privileged-ns

baseline-ns

restricted-ns

Pod

Pod

Pod

 Modes - Pod Security Admission

 Revising the Basics

We usually add a label on a namespace to define the appropriate pod security
standard profile.

Label Format:

pod-security.kubernetes.io/<MODE>: <profile>

 Understanding the Modes

Modes Description

Enforce Rejects Pods with policy violations.

Audit Allows Pods with policy violations but includes an audit annotation in the audit
log event record.

Warn Allows Pods with policy violations but warns users.

 Multiple Modes can be used

A namespace can configure any or all modes, or even set a different level for
different modes.

 Reference Screenshot

The following image depicts the user trying to deploy the nginx pod in the
test-namespace that has two labels attached.

● pod-security.kubernetes.io/enforce: privileged
● pod-security.kubernetes.io/warn: restricted

 Points to Note - PSA and PSS

 Mode Version
For each mode, there are two labels that determine the policy used.

Kubernetes introduces different versions of security policies (e.g v1.24, v1.25,
etc.), and the mode version indicates which set of security rules are applied.

 Point to note - Version not Defined

If you do not define the version in the Pod Security Standard label, Kubernetes
will use the default version of the Pod Security Admission (PSA) policy that is
supported by the cluster.

The default version is typically the latest stable version supported by the
Kubernetes API in that release.

If later, when Kubernetes is upgraded, the Pod Security Standards may change
in newer versions. This could lead to unexpected policy enforcement changes
that might break workloads.

 Workload resources and Pod templates

The enforce mode does not apply to workload objects like Deployments etc.
Instead, enforcement happens only when the actual Pods are created.

Example:

A workload object (like a Deployment) can be created even if its Pod template
violates security policies.

But when Kubernetes tries to create Pods from that Deployment, those Pods will
be blocked if they violate the enforced security policies.

 Labels to Existing Namespace
When an enforce policy label is added or changed, the admission plugin will test
each pod in the namespace against the new policy. Violations are returned to
the user as warnings.

Existing running pods are not affected.

 Adding Labels with Dry Run
It is helpful to apply the --dry-run flag when initially evaluating security profile
changes for namespaces.

The Pod Security Standard checks will still be run in dry run mode, giving you
information about how the new policy would treat existing pods, without actually
updating a policy.

 Exemptions
You can define exemptions from pod security enforcement in order to allow the
creation of pods that would have otherwise been prohibited due to the policy
associated with a given namespace.

Exemptions can be statically configured in the Admission Controller
configuration via the --admission-control-config-file to kube-apiserver.

Exemption

usernames

runtimeClasses

namespaces

 Admission Controller - ImagePolicyWebHook

 Understanding the Basics

The ImagePolicyWebhook admission controller allows Kubernetes to check with
an external service before allowing pods to run based on their container images.

 API Server External Image Validator

Create Pod from
mysql image

mysql:latest

Deny

 Configuration File
ImagePolicyWebhook uses a configuration file to set options for the behavior of
the backend.

ImagePolicyWebHook

 Kubernetes Secrets

 HardCoding Secrets Should be Avoided

It is frequently observed that sensitive data like passwords, tokens, etc., are
hard-coded as part of the container image.

App Pod

Key Value

db_user dbadmin

db_pass A1S323#

Hardcoded Secrets

 Introducing Secret

Kubernetes Secrets is a feature that allows us to store these sensitive data.

db_pass db12#12

token S2A2434

key 323@4dg

pass admin@123
Secrets

App Pod (Prod)

Mount from Secret

 Reference Screenshot

 Point to Note - Part 1
By default, Secrets are not very secure as they are not stored in encrypted
format in the data store (ETCD). You can setup this configuration manually.

You can also additionally protect access to secrets using RBAC for access
control.

ETCD

Store Secret pass=1234
pass=1234

 Point to Note - Part 2
When you view a secret, Kubectl will print the Secret in base64 encoded format.

You’ll have to use an external base64 decoder to decode the Secret fully

base64 encoded

 Kubernetes Secrets - Practical

 Two Parts of this Practical
First Part: Create Kubernetes Secret
Second Part: Mount the Secret inside the Pod.

db_pass db12#12

token S2A2434

key 323@4dg

pass admin@123
Secrets

App Pod (Prod)

Fetch from Prod
Secret

 Part 1 - Create Secret

Use the kubectl create secret command to create secret in Kubernetes.

 Different Approaches for Reference

A Pod can reference the Secret in a variety of ways, such as in a volume mount
or as an environment variable.

Secrets Pod
Access Methods

Environment Variables

Volume Mounts

 Part 1 - Mount Secret Inside Pod (Volume)

Using Volume Mounts, you can mount a specific secret inside a Pod.

 Part 2 - Mount Secret Inside Pod (Env)
In this method, the values in the Secrets are exposed as environment variables
to the container.

 Overview of Cillium

 Setting the Base
Unlike traditional CNI plugins which primarily rely on iptables and IP routing,
Cilium uses eBPF to achieve efficient packet processing, reducing complexity
and improving performance.

 Cilium Network Policies

Cilium network policy provides more granularity, flexibility, and advanced
features than the standard Kubernetes network policy.

Cilium supports defining granular rulesets at Layers 3, 4, and 7 of the OSI model

Feature K8s Network Policy Cilium Network Policy

Basic L3/L4 layer isolations Yes Yes

L7 (HTTP,DNS, Kafka) No Yes

Better observability No Yes (Hubble)

 Hubble in Cilium
Hubble is Cilium's observability layer, offering deep insights into your
Kubernetes cluster's network.

It's like a powerful microscope for your cluster's network traffic, allowing you to
see and understand what's happening at a granular level.

 Point to Note - Network Policies

Cilium implements the standard Kubernetes network policy spec. Your
Kubernetes network policies work out of the box with Cilium without any
additional changes.

 Transparent Encryption
Cilium provides encryption using IPsec or WireGuard to secure communication
between workloads in a Kubernetes cluster.

Encryption ensures that traffic between pods or nodes remains confidential and
protected from interception.

 Structure of Cilium Network Policies

 Cilium Network Policies

Cilium network policy provides more granularity, flexibility, and advanced
features than the standard Kubernetes network policy.

Cilium supports defining granular rulesets at Layers 3, 4, and 7 of the OSI model

Feature K8s Network Policy Cilium Network Policy

Basic L3/L4 layer isolations Yes Yes

L7 (HTTP,DNS, Kafka) No Yes

Better observability No Yes (Hubble)

 Base Structure

The base structure of CiliumNetworkPolicy is similar to a traditional Network
policies in Kubernetes.

 Simple Default Deny Policy

The following policy selects all the pods in the default namespace and denies all
inbound and outbound traffic.

 Match Labels
The matchLabels field within an endpointSelector is used to select which
endpoints (pods) the policy applies to, based on their Kubernetes labels

 Ingress
The ingress field defines rules for incoming traffic.

 Egress
The egress field defines rules for outgoing traffic.

 Setting the Base
We can create Cilium Network Policies to control traffic at Layer 3, Layer 4, and
Layer 7 of the OSI Model.

 Cilium Network Policies - Layer 3 Rules

 Setting the Base
The layer 3 policy establishes the base connectivity rules regarding which
endpoints can talk to each other.

Layer 3 policies can be specified using the following methods:

Cilium Layer 3 Policies

Endpoints Based

Service Based

Entities Based

Node Based

IP / CIDR Based

DNS Based

Types Description

Endpoints Based Based on Kubernetes pod labels, allowing or denying traffic between specific
pods.

Services based Policies are applied based on Kubernetes services, controlling traffic based on
service names rather than individual pods.

Entities Based Policies targeting predefined entity groups like "cluster", "host", "world", or
"all". Simplifies policy creation for common traffic patterns.

Node based Policies define traffic rules based on the nodes in the cluster

IP/CIDR based Policies allow or deny traffic based on specific IP addresses or CIDR blocks

 Endpoint Based Policies
These policies are based on Kubernetes pod labels, allowing or restricting traffic
between specific pods within a cluster.

frontend-1 frontend-2 backend-1 backend-2communication

app: frontend app: backend

CiliumNetworkPolicy

Allow Pods with Label app=frontend to
connect with Pods with Label app=backend

 Endpoint Based - Example
This policy allows inbound traffic from pods with label of role=frontend to connect
with Pods with label of role=backend.

 Endpoint Based - Example 2
An empty Endpoint Selector will select all endpoints, thus writing a rule that will
allow all ingress traffic to an endpoint may be done as follows:

 Cilium Network Policies - Entities Based

 Entities Based Policy
Cilium provides predefined entities like world, host, cluster, and remote-node to
define network policies

Entities Description

world Represents any external (non-cluster) traffic, including the internet.

host Represents the local Kubernetes node (host network)

remote-node Represents other Kubernetes nodes in the cluster that are not the local
node.

cluster Represents all workload endpoints within the Kubernetes cluster. Includes
all pods across all namespaces

all Represents all possible endpoints both inside and outside the cluster.

 Entities Based Policy - Example 1
Pods can communicate with other pods and services within the cluster.
Pods cannot access external IPs or the internet

 Entities Based Policy - Example 2
The following policy will allow traffic from all pods to connect to destination
outside of the cluster.

 Cilium Network Policies - Layer 4 Rules

 Setting the Base

Layer 4 policy can be specified in addition to layer 3 policies or independently.

It restricts the ability of an endpoint to emit and/or receive packets on a particular
port using a particular protocol.

Cilium Layer 4 Policies
Ports

Protocol

 Point to Note

If no layer 4 policy is specified for an endpoint, the endpoint is allowed to send
and receive on all layer 4 ports and protocols including ICMP.

 Example Policy - Port
This policy allow curl-pod to connect outbound on Port 80 for the protocol of
TCP.

 Cilium Network Policies - DNS Rules

 Example Policy - DNS
The following policy allows DNS resolution for domain of kplabs.in and other
domain resolutions will be blocked.

 Cilium - Deny Policies

 Setting the Base

Cilium's Deny Policies allow you to explicitly block certain network traffic
between pods in a Kubernetes cluster.

Deny policies take precedence over allow policies, meaning that if both an allow
and deny policy exist, the deny policy will win.

CiliumNetworkPolicy

Allow outbound to internet

CiliumNetworkPolicy

Deny outbound to internet
Pod-1

Higher Precedence

 Deny Policies

ingressDeny and egressDeny are features in Cilium Network Policies that allow
you to explicitly deny specific traffic patterns

ingressDeny Blocks specific incoming traffic, even if other policies would allow it

egressDeny Blocks specific outgoing traffic, even if other policies would allow it

 Example 1 - ingressDeny

The following policy allows all the entities to connect to the pod with label of
app=server except the pod with label app=random-pod

 Example 2 - egressDeny
The following CNP blocks connection for pod with label of app=random-pod
towards endpoint with label of app=server

All other egress is allowed.

 Cilium - Transparent Encryption

 Understanding the Challenge

Kubernetes does not natively support pod-to-pod encryption for network traffic.

By default, communication between pods in a Kubernetes cluster happens in
plaintext unless additional security measures are implemented.

Pod-1 Pod-2plain-text traffic

Worker Node 1 Worker Node 2

 Setting the Base

Cilium supports the transparent encryption of Cilium-managed host traffic and
traffic between Cilium-managed endpoints either using IPsec or WireGuard

 Verifying the Results

After transparent encryption is enabled, you can capture the tcpdump traffic to
verify the results.

 Security Context - readOnlyRootFilesystem

 Setting the Base
readOnlyRootFilesystem mounts the container's root filesystem as read-only.

This can mitigate many common attack vectors by preventing unauthorized
changes to critical files within the container.

 Adding Exception
For temporary file storage within your application, an emptyDir volume mounted
to a location like /tmp provides can be a suitable solution

 When to Use It
It is ideal for containers where the application does not need to modify the root
filesystem at runtime.

For example, applications that rely on external volumes for persistent or
temporary data storage.

If your application requires writable areas (like /tmp for temporary data), you can
explicitly mount these volumes with write permissions while keeping the rest of
the filesystem read-only.

 When Not to Use It

Some applications are designed to write logs, cache data, or manage runtime
configurations on the root filesystem. In such cases, forcing the root filesystem
to be read-only may break functionality.

 Overview of AppArmor

 Revising DAC

Discretionary access control (DAC) allows restricting access to objects based on
the identity of subjects and/or groups to which they belong.

 Challenges with DAC

DAC allows programs to inherit the full permissions of the user running them. If a
user can access sensitive files, any program they run (including malware) can
access those same files.

 Sample Use-Case
You have a binary file that performs some basic operation on server like deleting
old log files to cleanup resources.

Suddenly you have seen that binary file is connecting to internet and sending
network traffic.

cleanup-programsend-server-data

Attacker

 Mandatory Access Controls
Mandatory Access Control (MAC) is a security model in which access to
resources is strictly regulated by a central authority based on predefined security
policies.

Two important concept: Confined (Restricted) and Unconfined (Not Restricted)

Process X Process Z

Confined Not Confined

 Confined Process
Confined Processes are restricted.

Everything that process intends to do must be listed in a profile.

If that capability is not listed in the profile, the process will not be allowed to run
that.

Process X

Confined Profile

Allow read from /etc

Allow write to /tmp

Allow restart of nginx

Capabilities

 Primary Modes of AppArmor

Modes Description

Enforce Actively enforces the defined AppArmor security profile.

Complain
Violations are logged, but the application runs normally without

restrictions.

Unconfined The application runs without AppArmor restrictions.

 AppArmor and Kubernetes

 Setting the Base

Kubernetes allows you to apply AppArmor profiles to Pods and containers

 Profile Types Available

Profile Type Description

RuntimeDefault To use the runtime's default profile

LocalHost Uses a custom security profile stored on the node's filesystem

Unconfined To run without AppArmor

Open Container Initiative

Let’s Standardize

Importance of Standardization

In an organization, if image standardization is not set, different developers will use different set
of images.

This leads to challenges in troubleshooting, as well as security.

 knowledge portal

Open Container Initiative

The Open Container Initiative (OCI) is a Linux Foundation project to design open standards
for containers.

There are two important specifications

 knowledge portal

Specification Description

Image Specification Defines how to create an OCI Image, which includes an image
manifest, a filesystem (layer) serialization, and an image

configuration.

Runtime Specification defines how to run the OCI image bundle as a container.

Docker Workflow

 knowledge portal

High-Level Container Runtime

Low-Level Container Runtime

Container Runtimes

A container runtime is software that executes containers and manages container images on a
node

There are multiple container runtimes available. Some of these include:

● Docker
● containerd
● Cri-o
● Podman

 knowledge portal

 High-Level and Low Level Runtimes

 knowledge portal

● Pulling Images from registry.
● Unpacks image into containers root fs
● Generates OCI runtime spec json describing how to run container
● Launches OCI compatible runtime (default runc)

● Runs the container process

Container Runtime Interface

Each container runtime has it own strengths.

K8s uses Container Runtime Interface which is a a plugin interface which enables kubelet to use
a wide variety of container runtimes without the need to recompile.

 knowledge portal

kubelet container runtime

pod1

podn
Kubernetes Master

Flexibility for Container Runtimes

 knowledge portal

 kubelet

 containerd

 runC

PodNPod1

CRI

OCI

 kubelet

 cri-o

 runC

PodNPod1

CRI

OCI

Container Runtime Interface

CRI

 Container Runtime Interface

Each container runtime has it own strengths.

K8s uses Container Runtime Interface which is a plugin interface that enables kubelet to use a
wide variety of container runtimes without the need to recompile.

 knowledge portal

 kubelet container runtime

pod1

podn
Kubernetes Master

 knowledge portal

Container Sandbox

Sandboxing

Basic Architecture

Applications that run in traditional Linux containers access system resources in the same way
that regular (non-containerized) applications do: by making system calls directly to the host
kernel.

 knowledge portal

Use Cases - Bugs

If there are certain bugs at the Kernel level, the application can take advantage of it to achieve
various use-cases like privilege escalation, and others.

 knowledge portal

 Host Kernel

 Application

Seccomp

Kernel features like seccomp filters can provide better isolation between the application and host
kernel, but they require the user to create a predefined whitelist of system calls.

In practice, it’s often difficult to know which system calls will be required by an application
beforehand.

 knowledge portal

Container Sandbox

Sandboxing is a approach that enforces a level of isolation between the software running on the
machine and the underlying operating system.

In practice, it’s often difficult to know which system calls will be required by an application
beforehand.

 knowledge portal

Overview of gVisor

The core of gVisor is a kernel that runs as a normal, unprivileged process that supports most
Linux system calls.

gVisor intercepts all system calls made by the application, and does the necessary work to service
them thus providing a strong isolation boundary.

 knowledge portal

Exploring gVisor

It primarily replaces runc (default runtime) which had few serious vulnerabilities

It comes with an OCI runtime named runsc and hence can act as a drop-in replacement to the
runc.

 knowledge portal

 high-level-container-runtime

 runc runsc

Exploring dmesg

dmesg (diagnostic message) is a command on most Unix-like operating systems that prints the
message buffer of the kernel.

 knowledge portal

gVisor based POD Default runtime class pod

Challenges

Generally organization makes use of sandboxes like gVisor for the applications that are not
entirely trusted (cloning repo from GitHub and running that application)

It can lead to certain performance degradation.

 knowledge portal

RunTimeClass

RuntimeClass is a feature for selecting the container runtime configuration.

You can set a different RuntimeClass between different Pods to provide a balance of
performance versus security.

 knowledge portal

 pod1 pod2

default, runc gvisor,runsc

Vulnerability, Exploit, Payload

 Ethical Hacking Terminology

The simple house terminology

 knowledge portal

The Answers

 knowledge portal

Vulnerability :- Hole on the Side of the House

Exploit :- The Robber

Payload :- What Robber does inside the house

Security Terminology

 knowledge portal

Vulnerability :- Bad Software Code

Exploit :- Program that exploits code to get inside.

Payload :- Stealing Data, Ransomwares etc.

Scan Result of Vulnerability Scanners

 knowledge portal

Container Security Scanning
Container Security

 Getting Started

 knowledge portal

Docker Containers can have security vulnerabilities.

If blindly pulled and if containers are running in production, it can result in breach.

 Overview of Security Scanning in DTR

 knowledge portal

DTR allows us to perform security scan for the containers.

These scan can perform “On Push” or even manually.

Trivy

 Let’s Scan with Trivy

Overview of Trivy

Trivy is a open-source based simple and comprehensive vulnerability Scanner for containers

 knowledge portal

kube-bench

 Security Monitoring

Overview of kube-bench

kube-bench is a Go application that checks whether Kubernetes is deployed securely by running
the checks documented in the CIS Kubernetes Benchmark.

 knowledge portal

 Securing Docker Daemon

 Setting the Base

In most organizations, Docker daemon runs with root privileges, which means
any user with access to the daemon can potentially gain elevated privileges on
the host system.

 1 - Removing Users from Docker Group

Users in the Docker group effectively have root privileges on the host system, as
they can create containers that mount sensitive host directories.

 2 - Deny Traffic to Docker Daemon

If the daemon is exposed over TCP (tcp://0.0.0.0:2375 or tcp://0.0.0.0:2376), it
becomes a prime target for remote attacks

 Reference Screenshot of Request to Remote Access

 Dockerfile - Security Best Practices

 Setting the Base
A Dockerfile designed with security in mind avoids common security issues like
privileged access, open ports, redundant software, and credential leaks

 1 - Use Updated Base Image

The original Dockerfile uses ubuntu:18.04, which is outdated.

Switching to a more recent version like ubuntu:24.10 ensures better security,
package support, and optimizations.

FROM ubuntu:18.04 FROM ubuntu:24.10

 2 - Prefer Minimal Image

If the application does not require Ubuntu, a more minimal image like alpine can
further reduce image size.

FROM ubuntu:24.10 FROM alpine

 3 - Reduce Number of Layers

Instead of multiple RUN statement, combine them into a single RUN command

 4 - Avoid Running as Root

The original Dockerfile uses ROOT user. This gives full read, write, and execute
permissions to everyone, which is a security risk.

Instead use other user with limited privilege.

 USER root USER appuser

Static Analysis

 Let’s Secure

Overview of Static Analysis

Static code analysis is a method of debugging by examining source code before a program is run.

 knowledge portal

 PODS

Rules

No run as root user

No Host Volume Mount

No HostNetwork

ImagePullPolicy !=Always

Tools for Static Analysis

There are various tools like Checkov that can perform static analysis.

 knowledge portal

Dockerfile is Important

 knowledge portal

It is als important to go through Dockerfile for potential misconfiguration (security side)

 Securing Docker Daemon

 Setting the Base

In most organizations, Docker daemon runs with root privileges, which means
any user with access to the daemon can potentially gain elevated privileges on
the host system.

 1 - Removing Users from Docker Group

Users in the Docker group effectively have root privileges on the host system, as
they can create containers that mount sensitive host directories.

 2 - Deny Traffic to Docker Daemon

If the daemon is exposed over TCP (tcp://0.0.0.0:2375 or tcp://0.0.0.0:2376), it
becomes a prime target for remote attacks

 Reference Screenshot of Request to TCP Port

 Dockerfile - Security Best Practices

 Setting the Base
A Dockerfile designed with security in mind avoids common security issues like
privileged access, open ports, redundant software, and credential leaks

 1 - Use Updated Base Image

The original Dockerfile uses ubuntu:18.04, which is outdated.

Switching to a more recent version like ubuntu:24.10 ensures better security,
package support, and optimizations.

FROM ubuntu:18.04 FROM ubuntu:24.10

 2 - Prefer Minimal Image

If the application does not require Ubuntu, a more minimal image like alpine can
further reduce image size.

FROM ubuntu:24.10 FROM alpine

 3 - Reduce Number of Layers

Instead of multiple RUN statement, combine them into a single RUN command

 4 - Avoid Running as Root

The original Dockerfile uses ROOT user. This gives full read, write, and execute
permissions to everyone, which is a security risk.

Instead use other user with limited privilege.

 USER root USER appuser

 Docker Daemon Configuration

 Setting the Base

There are two ways to configure the Docker daemon:

1. Use a JSON configuration file (preferred)
2. Use flags when starting dockerd

 JSON Configuration File Location

The following table shows the location where the Docker daemon expects to find
the configuration file by default

OS and Configuration Description

Linux, regular setup /etc/docker/daemon.json

Windows C:\ProgramData\docker\config\daemon.json

 Protecting Docker Daemon Socket

 Setting the Base

If you need Docker to be reachable through HTTP, you can enable TLS (HTTPS)
and allow trusted connections through certificate based authentication

dockerAuthentication via Certificates

 BOM and SBOM

 Basics of Bill of Materials
A Bill of Materials (BOM) is like a recipe or blueprint for building a product.

It lists all the components, quantity, materials required to manufacture an item.

 Software Bill of Materials

A Software Bill of Materials (SBOM) is a detailed list of all the components that
make up a software application.

NGINX

Package Relationships

OpenSSL 1.2.1

PCRE 8.44

zLib 1.2.10

Curl 7.88

Bash 5.2

 Generating SBOM
Generating a Software Bill of Materials (SBOM) involves using specialized tools
that analyze a software application, its dependencies, and components.

Various tools Trivy, Syft, Bom can generate SBOM.

SBOM

Generate

 SBOM Formats

The two most widely used SBOM formats are:

1. SPDX (Software Package Data Exchange)
2. CycloneDX

SBOM Format

SPDX CycloneDX

 Understanding the Formats

Features SPDX CycloneDX

Developed By Linux Foundation OWASP

Focus Area License compliance, intellectual property,
security

Security, software supply chain risk
management

Primary Use Case Used widely in open source compliance
and legal audits

Used mainly for security, vulnerability
management, and risk assessment

Complexity More complex, detailed metadata about
licenses and compliance

Simplified, security-focused,
lightweight

 Overview of Falco

 Detection and Prevention
In Kubernetes, features like Network Policies and RBAC are primarily used for
prevention related capabilities.

It is equally important to implement detection measures that provide visibility into
the environment, allowing us to monitor and understand ongoing activities.

 Introduction to Falco

Falco is an open-source runtime security tool that allows users to define a set of
rules that will trigger an alert whenever the conditions are met.

Falco

Sample Rules

A shell inside a container

Sensitive file like /etc/shadow is read.

curl / wget command used.

New package installed

Host Based Events Captured

Container Based Events Captured

 Writing Custom Falco Rules

 Basic Elements of Falco Rule

 Basic Rule Format

Field Description

rules The name of the rule. It should be unique and descriptive of what the rule detects.

desc A human-readable description of what the rule does, explaining the security threat being
detected.

condition A logical expression that defines when the rule should trigger an alert.

output The alert message that is generated when the rule condition is met

priority The severity level of the rule (e.g., EMERGENCY, ALERT, CRITICAL, ERROR, WARNING
etc) . Higher severity indicates more critical security events.

 Sample Rule

Below is a sample Falco rule that detects the execution of the curl command
inside a Kubernetes pod.

 Macros

Macros are essentially predefined rule conditions. They allows you to avoid
repeatedly writing the same complex expressions.

 Falco Rule for /dev/mem Access

 Setting the Base

/dev/mem is a special device file in Linux that provides access to the system's
physical memory.

 Important to Monitor /dev/mem

Since /dev/mem grants access to critical system memory, unauthorized access
can lead to Privilege Escalation, Kernel Exploits etc.

Containers are meant to be isolated and should not interact directly with system
memory.

app-pod

/dev/mem

 Container and /dev/mem Access
Not all Kubernetes pods have access to /dev/mem by default.

Access to /dev/mem is restricted unless a pod is privileged or explicitly granted
special permissions.

 Falco Configuration File

 Setting the Base

Falco's configuration file is a YAML file containing a collection of key: value or
key: [value list] pairs.

Configuration file is available at /etc/falco.yaml

Sysdig

Monitoring System calls

Overview of Sysdig

In a normal scenario of troubleshooting and performance monitoring, we make use of the
following tools

Sysdig offers the functionality of these tools along with a lot more.

strace Discovering system calls

tcpdump Network traffic monitoring

lsof Files are opened by which process.

netstat Network Connection monitoring

htop Process Monitoring

iftop Network Bandwidth monitoring

Interactive Options

Sysdig Utility comes with a command line option (sysdig) as well as interface UI (csysdig)

 knowledge portal

Running sysdig

In its simplest form, when you run sysdig, you will see all the system calls that are happening
within the system.

 knowledge portal

Filters

Since you will get a huge amount of data when monitoring system calls, you can use sysdig with
filters to make the output more fine grained.

 knowledge portal

Sysdig Chisels

Sysdig’s chisels are little scripts that analyze the sysdig event stream to perform useful actions

 knowledge portal

Audit Logging

 Designing Right Logging Rules

Revising Auditing

 knowledge portal

Auditing provides a security-relevant, chronological set of records documenting the sequence of
actions in a cluster.

● what happened?
● when did it happen?
● who initiated it?
● on what did it happen?
● from where was it initiated?
● to where was it going?

Audit Policy Levels

Audit policy defines rules about what events should be recorded and what data they should
include.

 knowledge portal

Audit Levels Description

None don't log events that match this rule.

Metadata Log request metadata (requesting user, timestamp, resource, verb, etc.)
but not request or response body.

Request Log event metadata and request body but not response body.

RequestResponse Log event metadata, request and response bodies.

Stages

The kube-apiserver processes request in stages and each stage generates an audit event.

 knowledge portal

Stage Description

RequestReceived The stage for events generated as soon as the audit handler receives the
request, and before it is delegated down the handler chain.

ResponseStarted Once the response headers are sent, but before the response body is sent. This
stage is only generated for long-running requests (e.g. watch).

ResponseComplete The response body has been completed and no more bytes will be sent.

Panic Events generated when a panic occurred.

 Important Pointers for Exams

 Setting the Base
The 'Important Pointers for Exams' video is not a substitute for the full course.

We highly recommend completing all the videos that are part of the course.

 Keep Close Look on External Documentation

The specific external documentation permitted in Linux Foundation exams
provides insight into the key topics that might be assessed.

 CIS Benchmarks
It is important to know about configuring Kubernetes components (Control
Plane + Worker Node) based on various CIS Benchmark related configuration.

Be very familiar with kubeadm structure and troubleshooting pointers.

Set AuthorizationMode for API Server to RBAC,WebHook

Disable Anonymous Authentication in Kubelet

Disable --auto-tls in etcd

 ImagePolicyWebHook

Know the end to end steps to create and enable ImagePolicyWebhook.

Step 1: Create a Configuration File.
Step 2: Create a KubeConfig file.
Step 3: Mount Volumes
Step 4: Enable Admission Controller.

Know about the defaultAllow parameter in the configuration file.

 Auditing

You should be able to enable Auditing based on the requirements.

Field Description

--audit-log-path Specifies the file path where the audit log is written.

--audit-log-maxage Defines the maximum number of days to retain old audit log files before
deletion.

--audit-log-maxbackup Sets the maximum number of old audit log files to retain.

--audit-log-maxsize Specifies the maximum size (in megabytes) of the audit log file before it
gets rotated.

 Example Question - Auditing

1. Logs should be stored at /var/log/demo-audit.logs

2. Logs should be retained for the next 30 days.

3. Maximum size before rotation should be 500 MB.

4. Maximum number of 10 audit log files should be made available.

 Audit Policy

Be familiar setting the Audit Policy based on requirements.

 Docker Security

You need to be aware of Docker Daemon Security + Dockerfile security best
practices.

Example Scenarios:

1. Analyze the Dockerfile and fix 5 security issues.
2. Disable Docker Daemon to listen on 2375
3. Make Docker Daemon Secure
4. Remove user from docker group.

 Static Analysis on Kubernetes Manifest
You should be able to read a given Kubernetes manifest file and fix any security
related issues.

 Network Policies + Cilium Network Policies

Be comfortable writing Network Policies + Cilium Network Policy.

For Cilium Network Policy:

- Be aware of ingressDeny and egressDeny block.

- Be aware of the Entities in Cilium Network Policies.

 Pod Security Standards
You need to have clear understanding of pod security standards, including how
to implement and adjust PSS configurations for pods and deployments

Policies Description

Privileged Unrestricted policy, providing the widest possible level of permissions.
Allows privilege escalations

Baseline Minimally restrictive policy which prevents known privilege escalations.

Restricted Heavily restricted policy, following current Pod hardening best practices.

 Security Context

Be familiar with Security Context.

Privileged Pods, Capabilities, readOnlyRootFilesystem (immutability)

 Kubernetes Secrets

Know the basics of creating Secrets and mounting them to Pods.

Be familiar with various type of secrets

1. Opaque Secrets.

2. TLS Secrets

3. Docker config Secrets

 BOM and SBOM

You should know on how to create SBOM using bom tool based on
requirements.

Example: Identify Image that has xyz 1.3.2 package and create SBOM for it.

 Kubernetes Cluster Upgrade

Learn to upgrade both control plane and worker nodes using kubeadm

Don’t mix the steps. The steps for upgrading the kubeadm worker node are
different from control plane node.

Upgrade Worker
Node

Upgrade Control
Plane Node

 Ingress with TLS

Be familiar with the steps required to set up Ingress with TLS.

Be familiar with ssl-redirect annotation for HTTP to HTTPS

 Service Account + Projected Volumes

Know how to create service accounts with auto mounting as disabled.

Be familiar with mounting volume sources like SA using Projected Volumes.

 Falco (Keep it for Last)

Be prepared to develop a Falco rule according to a given specification.

If you encounter issues with Falco log generation, verify that syslog is enabled
with debug priority. Alternatively, run Falco directly from the command line,
bypassing systemd.

 Be Familiar with Deployment Manifest

Exams love Deployment manifests more then Pod manifests.

 Join us in our Adventure

Be Awesome

 kplabs.in/chat

 kplabs.in/linkedin

