Certified Kubernetes Security Specialist (CKS)

Setting the Base

Kubernetes is one of the most popular container orchestration tools in the
industry.

It is used extensively in many medium to large-scale organizations.

- gm 2
ING® “ipcom MEUE Ny #3ue
Insurance Commissioners

Che

Newllork NOIKIA NORDSTROM Northwestern
Cimes

® OpenAl (5 Pear Deck Pegon . PINgCAP @

PPT Release Date: 12th March 2025

Major Challenge - Security is Neglected

Security is often neglected due to which there are so many breaches.

A simple EC2 with open security group can teach you many things.

NaWl Public subr

LLLLI
rrnnt

LILILIL

\7

Security Group

Allow ALL from ALL

action

3 Values, 22.782% of events

Reports

Top values Top values by time

Events with this field

Values Count

Rare values

Results

failure

96% failure rate

Bruteforce from
across the world.

Kubernetes Security is Ignored

Most organizations deploying Kubernetes cluster ignore the security aspect of it.

There is big demand of individuals who know has expertise in K8s security.

Look! Another iNSE®8\ ¢ Kubernetes cluster

Introducing CKS

The Certified Kubernetes Security Specialist (CKS) certification demonstrates
competence on best practices for

CERTIFIED

kubernetes

SECURITY
SPECIALIST

What this Course is All About?

This is a certification-specific course aimed at individuals who intend to gain the
certification.

Thorough _
Preparation kubernetes

SPECIALIST

Certification is Beneficial

We will be covering all the domains for the Certified Kubernetes Security
Specialist certification.

Cluster Setup

Cluster Hardening

System Hardening

Minimize Microservice Vulnerabilities
Supply Chain Security

Monitoring, Logging and Runtime Security

O

The Exciting Part

We have an exam preparation section to help you get prepared for the exam.

We also have practice tests available as part of the course.

Prerequisite for CKS
Having a CKA certification is a prerequisite for CKS certification.

CKA need not be active, even if it is expired, it will be acceptable.

Certified Kubernetes Certified Kubernetes

Administrator Security Specialist

[Lab Based Exams

CKS exam is a lab-based exam where you will have to solve multiple scenarios
presented to you.

@ R

Challenge 1

Challenge 2

Challenge 3

Challenge 4

_ %

About Me

e DevSecOps Engineer - Defensive Security.
e Teaching is one of my passions.
e | have total of 16 courses, and around 400,000+ students now.

Something about me :-

Certified Kubernetes [, Administrator, Application Developer]
HashiCorp Certified [Terraform Professional [Vault and Consul Associate]

AWS Certified [Advanced Networking, Security Specialty, DevOps Pro, SA Pro, ...]
RedHat Certified Architect (RHCA) + 13 more Certifications

Part time Security Consultant

About the Course and Resources

1 - Aim of This Course

The of this course is to learn.

Certified Kubernetes Security Specialist

2 - PPT Slides PDF

ALL the slides that we use in this course is available to download as PDF.

We have around 360+ slides that are available to download.

Certified Kubernetes Administrator

Setting the Base

Kubernetes is one of the most popular container orchestration tools in the
industry.

Itis used extensively in many medium to large-scale organizations.

3 - PPT Version

The course is updated regularly and so are the PPTs.

We add the PPT release date in the PPT itself and the lecture from which you
download the PPTs.

PPT Version

Styesv B I = = M <

PPT Release Date = 12th Feb 2025|

4 - Our Community (Optional)

You can for any queries / discussions. You can also
connect with other students going through the same course in Discord
(Optional)

Discord Link: https://kplabs.in/chat

Category: #cks

S - Course Resource - GitHub

All the code that we use during practicals have been added to our GitHub page.
Section Name in the Course and GitHub are same for easy finding of code.

B domain-1-cluster-setup

8 domain-2-cluster-hardening

B domain-3-minimize-microservice-vulnerability
B domain-4-system-hardening

B domain-5-supply-chain-security

B domain-6-monitor-log-runtimesec

6 - Code Editor

Visual Studio Code is the default code editor used for this course.

!I' port-proto.yaml @

!I' port-proto.yaml
apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:
name: multi-port-egress
namespace: default
spec:
podSelector:
matchLabels:
role: db
policyTypes:
SNEPRESS
egress:
= Ho)F
- ipBlock:
cidr: 10.0.0.0/24

Basics of CIS Benchmarks

Understanding with Analogy

Think about how we secure our homes - we lock doors, install security systems,
and follow certain safety practices.

SMART HOME

Setting the Base

In the digital world, organizations face a similar challenge but on a much larger
scale. They have many computers, servers, and systems that need protection.

Understanding the Challenge

, Some good
and some not so effective.
This inconsistency can create vulnerabilities.
Security Standard
Install Anti-Virus
i Security Standard
Security Standard VPN Enabled
o Install Anti-Virus
|nSta||ed Ant|'V|rUS Server Hardening
VPN Enabled
VPN Enabled Regular VA/PT
Server Hardening
Organization 1 SIEM + 24/7 SOC

Organization 2
Organization 3

Introducing CIS Benchmarks

CIS Benchmarks are best-practice security guidelines developed by the Center
for Internet Security (CIS).

They provide step-by-step instructions on how to secure systems

AWS, Azure, GCP

Docker, Kubernetes

CIS Benchmarks —>

Linux, Windows, macOS

Nginx, Apache, IIS

Android, iOs

Tools that Assesses CIS Benchmarks

There are many tools available in the industry that can check whether an
organization has implemented CIS Benchmark correcily.

AWS Foundations Benchmark

© Download CSV

1992 2L N 25 To's Resouces

Ensure no security groups allow ingress from 0.0.0.0/0 to remote server administration ports

90 days or great
om

nly one active access key a RDP to port

s 10 remote server

om
Affected Resources (security-group)

Groupld GroupName

o
o
o
°
L]
o
o1
o
o
o
o1
°
o

ion-CloudBenchStack-1GVEXTEDNJRAW-C!

o

ogging
© 31 Ensure CloudTrailis enat egions Refo g SR
udTrail log file validation is enable 1 e c at https:/
y Groups

udTrail tra tegrated with Cle
e f

4Trail logs a
o a range
tion for customer created C bied De: o rem he offending inbound rule

ging is enabled in all VPC

from 0.0.0.0/0 to rem.

- 3 Ensure f ty group >C restricts all tra,

Ensure the default security group of every VPC restricts all traffic

Point to Note - Part 1

While valuable, implementing CIS Benchmarks, it might not cover 100% of what
needs to be done.

CIS Benchmarks evolve with new technologies and new threats.

Organization Specific

CIS Benchmarks

Security Benchmark

First Step Second Step

Point to Note - Part 2

Some recommendations might conflict with business needs and
organization-specific security standards.

CIS Benchmark talks about password complexity for local Linux passwords.

Organization might use AD / IPA instead of local passwords

CIS Benchmarks for Kubernetes

Setting the Base

CIS Benchmarks give a specific set of guidelines suitable to Kubernetes and
ensure the hardened Kubernetes environments.

| §
Kubernetes 1 E > Cloud connector
Master i

1

1

| .

1 1
1

: kube-controller- cloud-controller

: manager manager {

1 1

1 ! 1

1 1

1 1
1

kubelet

kube-proxy

II kube-scheduler

Understanding the Structure

CIS Benchmark covers both the Control Plane Node + Worker Node
components.

Areas Covered Sub-Components
Control Plane Node API, Controller Manager, Scheduler,
ETCD
CIS Benchmarks Worker Node Kubelet, Kube-Proxy

Pod Security Standards

CNI, Secrets, General

Shared Responsibility Model

Lot of providers offer managed Kubernetes offerings.

Since customers do not have full control over the cluster, the security
responsibility is divided.

S31onN0d

CUSTOMER DATA

CONTAINER IMAGES, SOURCE CODE, IAM

= fo} ‘g
o =| o
5 & §§ 3 3%35Es 3
o '
g BT aoee§§ >
R = “s § I3Rzd3 §
a 3 o 2 =) 2
EKS CLUSTER CONFIGURATION
WORKER NODE VPC
SCALING CONFIGURATION

0S, KUBELET, CRI & AMI CONFIGURATION

- CUSTOMER RESPONSIBILITY
- AWS RESPONSIBLITY

SCHEDULER

CONTROLLER MANAGER

API SERVER

Point to Note

If you are using a managed Kubernetes cluster, there are separate set of CIS
Benchmark for Kubernetes available that takes into account the Customer
responsibilities.

Kubernetes | Virtualization

CIS Alibaba Cloud Container Service For Kubernetes (ACK) Benchmark v1.0.0
CIS Amazon Elastic Kubernetes Service (EKS) Benchmark v1.6.0

CIS Azure Kubernetes Service (AKS) Benchmark v1.5.0

CIS Google Kubernetes Engine (GKE) Autopilot Benchmark v1.0.0

CIS Google Kubernetes Engine (GKE) Benchmark v1.6.1

CIS Kubernetes Benchmark v1.9.0

Tools to Analyze Kubernetes Benchmark

There are many tools like kube-bench that checks whether Kubernetes is
deployed securely by running the checks documented in the CIS Kubernetes
Benchmark.

1 Master Node Security Configuration

1.1 API Server

1.1.1 Ensure that the --allow-privileged argument is set to false (Scored)
Ensure that the --anonymous-auth argument is set to false (Scored)

3 Ensure that the --basic-auth-file argument is not set (Scored)

4 Ensure that the --insecure-allow-any-token argument is not set (Scored)
5 Ensure that the --kubelet-https argument is set to true (Scored)

.6 Ensure that the --insecure-bind-address argument is not set (Scored)

T

8

=Y
[=
N

Ensure that the --insecure-port argument is set to @ (Scored)

Ensure that the --secure-port argument is not set to @ (Scored)

.9 Ensure that the --profiling argument is set to false (Scored)

.10 Ensure that the --repair-malformed-updates argument is set to false (Scored)

.11 Ensure that the admission control policy is not set to AlwaysAdmit (Scored)

.12 Ensure that the admission control policy is set to AlwaysPullImages (Scored)

.13 Ensure that the admission control policy is set to DenyEscalatingExec (Scored)

.14 Ensure that the admission control policy is set to SecurityContextDeny (Scored)

.15 Ensure that the admission control policy is set to NamespacelLifecycle (Scored)

.16 Ensure that the --audit-log-path argument is set as appropriate (Scored)

.17 Ensure that the --audit-log-maxage argument is set to 3@ or as appropriate (Scored)
.18 Ensure that the --audit-log-maxbackup argument is set to 10 or as appropriate (Scored)
.19 Ensure that the --audit-log-maxsize argument is set to 100 or as appropriate (Scored)
20 Ensure that the --authorization-mode argument is not set to AlwaysAllow (Scored)

.21 Ensure that the --token-auth-file parameter is not set (Scored)

.22 Ensure that the --kubelet-certificate-authority argument is set as appropriate (Scored)

el =l el B S S R R R R R R S
N el el el el el el el el el el el el el e el

Our Lab Setup

Setting the Base

Throughout this course, we will be learning about security aspects of Kubernetes
components in detail.

For this, we need a test environment to practice.

1
Kubernetes 1 Z> Cloud connector
Master !

I

1

1

1 1
1 |
1 |
1 kube-controller- cloud-controller

g manager manager >
1 1
1 A 1
1 1
1 1

II kube-scheduler

Lab Setup

For our labs, we will making use of following setup:

Operating System

Cloud Provider

Ubuntu 24 LTS

Digital Ocean

You can decide to use cloud provider of your choice.

Point to Note - OS

It is recommended to use the same OS version that we use in practicals.

We have intentionally used Ubuntu LTS (Long Term Support)

Ubuntu 22.04 LTS
Ubuntu 21.10
Ubuntu 21.04
Ubuntu 20.10
Ubuntu 20.04 LTS
Ubuntu 18.04 LTS
Ubuntu 16.04 LTS
Ubuntu 14.04 LTS

M Hardware and maintenance updates
Maintenance updates
Interim release Standard Support

Il Extended Security Maintenance (ESM)

Why Digital Ocean?

1. Reasonably priced servers and pay per hour.
2. Good Amount of Credits for New Users (Referral) - $100-$200

3. Keep it simple approach.

Important Etcd Security Guidelines

Area of Focus

To secure etcd, we'll focus on three key areas.

Areas of Focus

Plain Text Data Storage

TLS Encryption

Certificate Based Authentication

1 - Plain Text Data Storage

By default, etcd stores data in plain text.

This means sensitive data (like Secrets) can be read directly from the disk.

Hey Etcd, store following Secret: /\
admin=secret123# \/

admin=secret123#

Secret Stored. \/

ETCD

API Server

Hacker is Happy

If an attacker gets access to etcd, they can read secrets in plain text.

Etcd Dump \/

admin=secret123#

N

2 - TLS Encryption

The data in-transit between API server and ETCD can also be intercepted.

You have to ensure that this data is also protected.

TN
N A

API Server

N~

ETCD

3 - Authentication

Without authentication, any client can connect to etcd and modify data.

It is important to have authentication in place for etcd.

Fetch me secret of /\
database-creds \/

API Server

Dude, who are you! \/

Authenticate First ETCD

Basic Authentication Workflow

Fetch me secret of
database-creds

etcd-user:etcd-password \/

API Server

Sure, here is the data: \/

admin=secret-password ETCD

Types of Authentication

Etcd supports various approaches to authenticate.

We will take example of username/passwords and Certificates.

Feature Username / Passwords Certificates
Security Level Lower Higher (certificates are harder to forge)
Ease of Use Easier to configure and manage More complex to set up and maintain
Best Use Case Simple setups, development Production environments, high-security
environments applications

4 - Certificate Based Authentication

In this approach, certificates are used to verify the identity.

Fetch me secret of
database-creds

N
N

API Server

Sure, here is the data: \/

admin=secret-password ETCD

Certificate Authority

Setting the Base

Kubernetes components, such as the API server, kubelet, controller manager
should communicate with each other over

These components need a mechanism to verify each other's identity.

Kubernetes
Master

I 1
1 1
1 1
1 1
1 1
1 |
1 kube-controller- cloud-controller

! I manager I manager
1

1 1
I A A |
1 |
1 1

1
I
. : |
< 1
! > kubelet kubelet
o I I
1 1
y > kube-proxy kube-proxy

! o -
I | E\
1 1
||— | B
kube-scheduler ! 1
: : Kubernetes
1
!

Certificate Authority

Certificate Authority is an entity which issues digital certificates.

Certificate
Authority

issue signed
certificates

Two Important Use-Cases

There are two important use-case where CA certificate will be used.

1. To generate TLS certificates for secure communication.

2. To generating certificates for client / component for authentication.

Workflow - Issuance of Signed Certificates

Certificate Authority

We are going to discuss workflow on how Certificate Authority issues signed
certificates.

Certificate
Authority

issue signed
certificates

Understanding the Workflow

For the entire workflow to work, there are three steps:

1. Generate the CA Certificate and Key
2. Generate the Certificate Signing Request for Components and Clients.

3. Sign the CSR using CA creds to get the final certificate.

Part 1 - Generate Certificate Signing Request

In this step, we generate client key and certificate signing request (CSR).

Client

Part 2 - Sign CSR using CA Creds

In this step, we send CSR to the certificate authority. CA will verify and sign it to
provide final client certificate.

Client

Client CSR client.csr

L2 Sent to CA

\ Root CA
CA Signs CSR

+ Client Certificate
client.crt

Part 3 - Authenticate

The signed certificates can be used for client authentication as well as for secure
communication over TLS.

Client
& Client Certificate A Client Private Key
client.crt client.key
@ Used for 6 Used for
API Server \ Server /
A Client Authentication
ETCD M Access Granted

@ etcd component

Etcd - Transport Security with HTTPS

Understanding the Challenge

If the traffic between the API server and etcd is not encrypted, an attacker
sniffing the network can easily fetch all of the data in plain text.

TN
N

API Server non-encrypted secret traffic

N

ETCD

Setting the Base

You can configure etcd to listen on HTTPS so that the communication between a
client and etcd is encrypted and secured.

API Server

ETCD

Step 1 - Generate Certificate for etcd

We have to generate a certificate for the etcd component.

This certificate will be used for HTTPS communication.

Step 2 - Start Eted using HT'TPS

Configure etcd to start listening on HTTPS and use the certificates.

root@demo:~/certificates# etcd --cert-file=/root/certificates/etcd.crt --key-file=/root/certificates/etcd.key --advertise-cli
ent-urls=https://127.0.0.1:2379 --listen-client-urls=https://127.0.0.1:2379
{"level":"warn","ts":"2025-02-07T18:10:30.155469Z","caller":"embed/config.go:689", "msg":"Running http and grpc server on sing
le port. This is not recommended for production."}

{"level"”:"info","ts":"2025-02-07T18:10:30.155753Z", "caller":"etcdmain/etcd.go:73", "msg":"Running: ","args":["etcd","--cert-fi
le=/root/certificates/etcd.crt"”,"--key-file=/root/certificates/etcd.key","--advertise-client-urls=https://127.0.0.1:2379","--
listen-client-urls=https://127.0.0.1:2379"]}

{"level"”:"warn","ts":"2025-02-07T18:10:30.155905Z", "caller":"etcdmain/etcd.go:105", "msg":" 'data-dir' was empty; using default
","data-dir":"default.etcd"}

{"level”:"info","ts":"2025-02-07T18:10:30.156098Z","caller"”:"etcdmain/etcd.go:116","msg":"server has been already initialized
","data-dir":"default.etcd”, "dir-type": "member"}
{"level"”:"warn","ts":"2025-02-07T18:10:30.156214Z","caller":"embed/config.go:689", "msg":"Running http and grpc server on sing
le port. This is not recommended for production.™}

{"level"”:"info","ts":"2025-02-07T18:10:30.156288Z", "caller":"embed/etcd.go:140", "msg":"configuring peer listeners","listen-pe
er-urls”:["http://localhost:2380"]}

{"level”:"info","ts":"2025-02-07T18:10:30.157211Z", "caller”:"embed/etcd.go:148", "msg": "configuring client listeners","listen-
client-urls":["https://127.0.0.1:2379"]}

Important Flags

Flags

Description

--cert-file=<path>

Specifies the path to the server's SSL/TLS certificate file.

--key-file=<path>

Specifies the path to the private key file corresponding to the certificate.

--advertise-client-urls

Specifies the URLs that etcd should advertise to clients for client
communication. Example: https://<IP>:2379

--listen-client-urls

Specifies the URLs on which etcd listens for client requests. Example:
https://0.0.0.0:2379

Mutual TLS Authentication

Case Study of 3 Cats

My wife takes care of 1 street cat, and she asked me to feed the cat (brownish)
while she is out of the city for the next 1 month.

| started to feed a cat regularly, but later realised it was an impersonator cat.

Original Cat Impersonators

Setting the Base

Client wants to store super sensitive data in etcd.

An attacker can launch his own etcd that act as an impersonator to store
sensitive data.

Store sensitive data N RN

Stored successfully. v \/

Impersonator etcd Original etcd

Solution - Mutual TLS

Mutual TLS (mTLS) is a security protocol that
before establishing a connection.

Both the client and the server have digital certificates issued by a trusted
Certificate Authority (CA)

| am genuine client. Here /\

is my signed certificate \/

| am genuine etcd. Here \/

is my signed certificate Original etcd

Requirement for mTLS to Work

Both the sender and receiver should have their certificates.

These certificates must be signed by trusted Certificate Authority that both
sender and receiver trusts.

2 O

Certificate of Client \/ Certificate of Server

Handshake Process

The client connects to the server.

The server presents its certificate to the client.
The client verifies the server's certificate.

The client presents its certificate to the server.
The server verifies the client's certificate.

If both verifications pass, a secure, encrypted connection is established.

Mutual TLS Authentication - Practical

Workflow Steps

Certificate Authority.

Etcd certificate signed through the Certificate Authority.

Client certificate signed through the Certificate Authority.

Both etcd and client will trust the Certificate Authority (1)

Important Flags - etcd server

Flags Description Importance
--cert-file and To start etcd with HTTPS Secure communication
--key-file

Enables client certificate authentication.

Requires clients to provide a valid
certificate signed by the trusted
CA.

Path to Certificate Authority certificate file.

Etcd uses this file to verify the
authenticity of client certificates.

--advertise-client-urls

Specifies the URLSs that etcd should advertise
to clients for client communication. Example:
https://<IP>:2379

--listen-client-urls

Specifies the URLs on which etcd listens for
client requests. Example: https://0.0.0.0:2379

Important Flags - etcdctl (client)

Flags Description Importance
etcdctl uses this to verify the
--cacert Path to Certificate Authority certificate file. | server's certificate. This ensures

you're connecting to the correct
etcd server and not a malicious
one.

--cert-file and --key-file

To authenticate with etcd using client
certificates.

Manage etcd using Systemd

Understanding the Challenge

At this stage, we have been starting etcd manually from CLI

This is a good approach during test, but not ideal for Production.

root@k8s:~/certificates# etcd --cert-file=etcd.crt --key-file=etcd.key --advertise-client-urls=https://127.0.0.1:2379 --clien
t-cert-auth --trusted-ca-file=ca.crt --listen-client-urls=https://127.0.0.1:2379
{"level”:"warn","ts":"2025-02-08T716:48:41.953249Z","caller": "embed/config.go:689", "msg
le port. This is not recommended for production."}
{"level":"info","ts":"2025-02-08T16:48:41.953545Z","caller":"etcdmain/etcd.go:73","msg":"Running: ","args":["etcd","--cert-fi
le=etcd.crt”,"--key-file=etcd.key","--advertise-client-urls=https://127.0.0.1:2379","--client-cert-auth”,"--trusted-ca-file=c
a.crt”,"--listen-client-urls=https://127.0.0.1:2379"]}
{"level”:"warn","ts":"2025-02-08T716:48:41.953703Z","caller":"etcdmain/etcd.go:105", "msg":" ‘data-dir’' was empty; using default
","data-dir":"default.etcd"}

{"level"”:"warn","ts":"2025-02-08T716:48:41.953864Z","caller":"embed/config.go:689","msg":"Running http and grpc server on sing
le port. This is not recommended for production."}

{"level”:"info","ts":"2025-02-08T16:48:41.953897Z","caller": "embed/etcd.go:140","msg": "configuring peer listeners”,"listen-pe
er-urls”:["http://localhost:2380"]}
{"level”:"info","ts":"2025-02-08T716:48:41.954840Z","caller"”:"embed/etcd.go:148","msg": "configuring client listeners”,"listen-
client-urls”:["https://127.0.0.1:2379"]}

{"level":"info","ts":"2025-02-08T16:48:41.955030Z", "caller":"embed/etcd.go:323", "msg": "starting an etcd server”,"etcd-version
":"3.5.18","git-sha":"5bca@8e", "go-version":"gol.22.11","go-o0s":"linux", "go-arch”:"amd64", "max-cpu-set”:1, "max-cpu-available"
:1,"member-initialized":false, "name":"default”,"data-dir":"default.etcd","wal-dir":"","wal-dir-dedicated”:"", "member-dir":"de
fault.etcd/member”, "force-new-cluster"”:false, "heartbeat-interval”:"100ms","election-timeout”:"1s","initial-election-tick-adva
nce" :true, "snapshot-count":100000, "max-wals":5, "max-snapshots":5, "snapshot-catchup-entries"”:5000,"initial-advertise-peer-urls
":["http://localhost:2380"],"listen-peer-urls”:["http://localhost:2380"], "advertise-client-urls":["https://127.0.0.1:2379"],"
listen-client-urls":["https://127.0.0.1:2379"],"listen-metrics-urls™:[],"cors":["*"],"host-whitelist":["*"],"initial-cluster"
:"default=http://localhost:2380","initial-cluster-state"”:"new","initial-cluster-token":"etcd-cluster"”, "quota-backend-bytes":2
147483648, "max-request-bytes":1572864, "max-concurrent-streams" :4294967295, "pre-vote":true, "initial-corrupt-check":false, "corr

upt-check-time-interval”:"0s", " compact-check-time-enabled":false, "compact-check-time-interval”:"1m@s", "auto-compaction-mode":

"periodic”,"auto-compaction-retention”:"@s","auto-compaction-interval”:"@s","discovery-url”:"","discovery-proxy":"", "downgrad
e-check-interval”:"5s"}

:"Running http and grpc server on sing

Systemd to Manage etcd

Systemd simplifies process management, handling tasks like starting, stopping,
and restarting services, including automatically starting etcd on server reboot.

root@demo:~# systemctl status etcd
e etcd.service - etcd

Loaded:
Active:
Docs:
Main PID:
Tasks:
Memory:
CPU:
CGroup:

28229 (etcd)

6 (limit: 1113)

6.9M (peak: 7.2M)

578ms
/system.slice/etcd.service

4 : /
2970 cr/local/bin/etcd --cert-fFile ~not /certifFicatec/eted eort
28229 PUSr/1ocal/DIN/ etCC CetG L Ie=/root/certlrlcatcesS/etcd. L

API Server Security

Setting the Base

The Kubernetes API Server for managing and interacting
with a Kubernetes cluster.

When we interact with your Kubernetes cluster using the kubectl, the request
goes to API server component.

Kubernetes
Master

kube controller- cloud controlle
manager manager
I
1

» I I
a 1
! > kubelet kubelet kubelet
i 1 1
1 1
>\ kube-proxy kube Proxy kube-proxy
1

I
i
II kube-scheduler I lzl I IEI

Kube netes

Etcd Component Setup

Our etcd server is configured to require certificate-based authentication and
operates over HTTPS for secure communication.

Connect using Certificate v

API Server

Listen on HTTPS

Certificate Authentication Required

Connecting API Server to ETCD

To connect API Server with etcd component, there are two essential steps that
need to be performed.

1. Generate certificates for AP| Server from trusted Certificate Authority.

2. API Server should connect to etcd over HTTPS endpoint.

Encryption Providers

The API Server should encrypt sensitive data, such as Kubernetes Secrets,
before storing it in etcd.

Hey Etcd, store following Secret: /\
5@23: $°5)%5 N A

#@23: $*$)%$

Secret Stored. \/

ETCD

API Server

TLS Encryption

Since users and other components may connect to the API Server over
potentially insecure networks, it is critical to ensure that all traffic is encrypted.

APl server should listen on HTTPS endpoint.

API Server

C—=
Client

Auditing
Auditing provides a security-relevant, chronological set of records documenting

the sequence of actions in a cluster.

It is important to have an appropriate audit policy to capture relevant logs.

{

Other Security Configurations

Several additional security configurations should be implemented, which we will
discuss in upcoming dedicated videos.

Some of these include:
e Admission Control
e Authorization Mode

e Authentication

Access Control

K8s Security

Overview of Access Control

When a request reaches the API, it goes through several stages, illustrated in the following diagram:

-

knowledge portal

Stage 1: Authentication

There are multiple ways in which we can authenticate. Some of these include:

Authentication Modes Description
X509 Client Certificates Valid client certificates signed by trusted CA.
Static Token File Sets of bearer token mentioned in a file.

knowledge portal

Stage 2: Authorization

After the request is authenticated as coming from a specific user, the request must be authorized.

Multiple authorization modules are supported.

Authorization Modes Description
AlwaysDeny Blocks all requests (used in tests).
AlwaysAllow Allows all requests; use if you don’t need authorization.
RBAC Allows you to create and store policies using the
Kubernetes API.
Node A special-purpose authorization mode that grants
permissions to kubelets

knowledge portal

Stage 3: Admission Controllers

An admission controller is a piece of code that intercepts requests to the Kubernetes API server
prior to persistence of the object, but after the request is authenticated and authorized.

Controllers that can intercept Kubernetes API requests, and modify or reject them based on
custom logic.

knowledge portal

Static Token Authentication

Let’s Authenticate

Overview of Static Token Authentication

The API server reads bearer tokens from a file when given the --token-auth-file=SOMEFILE
option on the command line.

/ \ token user
API Server A342GHS3 alice
BPRQRMS bob
0)
users.csv

knowledge portal

Connecting with API Server using Token

When using bearer token authentication from an http client, the API server expects an
Authorization header with a value of Bearer <token>

/ \ token user
"Authorization: Bearer A342GHS3#"
& API Server ‘ il A342GHS3 alice
BPRQRMS bob
Client \ /
users.csv

knowledge portal

Downsides of Token Authentication

Let’s Authenticate Securely

Downside of Token Authentication

The tokens are stored in clear-text in a file on the apiserver
Tokens cannot be revoked or rotated without restarting the apiserver.

Hence, it is recommended to not use this type of authentication.

Dem@PasswOrd#,bob,01,admins

knowledge portal

X509 Client Certificates - Authentication

Let’s Authenticate Securely

Authentication Types

There are multiple ways in which we can authenticate. Some of these include:

Authentication Modes Description
X509 Client Certificates Valid client certificates signed by trusted CA.
Static Token File Sets of bearer token mentioned in a file.

knowledge portal

How Things Work

A request is authenticated if the client certificate is signed by one of the certificate authorities that
is conﬁgured in the API server.

4 N

: Certificate
kube-apiserver -
& P Authority

Client K /

sl

knowledge portal

m_ Certificate

Om Authority

P @ J

® e |B2] 8= A= |BS
certificates .'I'!'I

knowledge portal

Downsides of X509 Client Certificates

Let’s Authenticate Securely

Disadvantage of Certificate Based Authentication

The private key is stored on an insecure media (local disk storage).

Certificates are generally long—lived. Kubernetes does not support certificate revocation related
area.

Groups are associated with Organization in certificate. If you want to change the group, you will
have to issue a new certificate.

knowledge portal

Authorization

K8s Security

Overview of Access Control

When a request reaches the API, it goes through several stages, illustrated in the following diagram:

-

knowledge portal

Authorization

After the request is authenticated as coming from a specific user, the request must be authorized.

Multiple authorization modules are supported.

Authorization Modes Description
AlwaysDeny Blocks all requests (used in tests).
AlwaysAllow Allows all requests; use if you don’t need authorization.
RBAC Allows you to create and store policies using the
Kubernetes API.
Node A special-purpose authorization mode that grants
permissions to kubelets

knowledge portal

Important Pointers - Certificates

Within a certificate, there are two important fields:
Common Name (CN) and Organization (O)
openssl req -new -key alice.key -subj "/CN=alice/O=admins" -out alice.csr

The above commands create CSR for the username alice belonging to admins group.

knowledge portal

System Masters Group in Kubernetes

There is a group named system:masters and any user that are part of this group have an
unrestricted access to the Kubernetes API server.

Even if every cluster role and role is deleted from the cluster, users who are members of this group
retain full access to the cluster.

system:masters normal-group

knowledge portal

Important Note

Membership of system:masters is particularly dangerous when combined with Kubernetes client
certificate authentication model, as Kubernetes does not currently provide any mechanism for
client certificates to be revoked.

knowledge portal

Encryption Provider Config

Encrypting Data in ETCD

Challenge with Plain Text Storage in ETCD

Data like Kubernetes Secrets are stored in plain-text in ETCD.

Hey Etcd,

Store following secret:

course: kplabs-cka-awesome
course: kplabs-cka-awesome

v Secret Stored

ETCD

API Server

knowledge portal

Implementing Encryption

You can associate an encryption key at kube-apiserver level so that the data can be encrypted before
being stored at the ETCD.

Hey Etcd,
Store following secret:
#@23: $°$)%$
#@23: $°$)%$

\/ Secret Stored

ETCD

API Server

knowledge portal

/registry/secret
s/default/my-sec

et kis vl ..
Secret........ my
—secret .defau

t".%$71bc0042-f
Db 4207-5488 74
56716307182.8.8,
iiBecti dipdate

eldsvl:3 1{"f da
ta”:{" 1" {} |lf p
assphrase":{}},"

f:type":{}}....p
assphrase. .topse
cret..Opaque.."

Before Encryption

/registry/secret
s/default/new-se
cret.k8s:enc:aes
cheivil:keyl:....
.eu.P..... Jeuunn

After Encryption

knowledge portal

Encryption Provider Configuration

The kube—apiserver process accepts an argument ——encryption—provider—conﬁg that controls how
API data is encrypted in etcd.

: EncryptionConfig
: vl

- secrets

: keyl

scret: ${ENCRYPTION KEY}
ty: {}

knowledge portal

Encryption providers

Encryption Providers Encryption Strength Speed
Identity None N/A N/A
aescbc AES-CBC with PKCS#7 padding Strongest Fast

secretbox XSalsa20 and Poly1305 Strong Faster
kms Uses envelope encryption Strongest Fast
scheme

knowledge portal

Important Pointers

By default, the identity provider is used to protect secrets in etcd, which provides no encryption.

You can make use of KMS provider for additional security.

The older secrets would still be in an unencrypted form.

knowledge portal

Auditing

Let’s Audit Securely

Overview of Auditing

Auditing provides a security-relevant, chronological set of records documenting the sequence of
actions in a cluster.

The cluster audits the activities generated by users, by applications that use the Kubernetes AP]I,
and by the control plane itself.

what happened?

when did it happen?
who initiated it?

on what did it happen?

from where was it initiated?

to where was it going?

knowledge portal

(aall

"kind": "Event",
"apiversion": "audit.k8s.io0/v1",
"level”: "Metadata",
"auditIiD": "388cadel-c368-45b4-aca9-652e32baf8el”,
"stage': "RequestReceived",
"requestURI": "/api/vl/namespaces/default/secrets?Timit=500",
"verb": "list",
“user™: {
"username": "bob",
"groups": [
"system:masters",
"system:authenticated"

]
g .
sourceIPs":
“127.0.0.-1"

]
"userAgent": "kubectl/v1.19.0 (linux/amd64) kubernetes/el199641",

"objectRef": {

"resource": "secrets",
"namespace”: "default",
" . 8 " " "
apiversion': "vl

”FequestReceivedTimestamp": 12020-12-03T116:55:10.357789Z7",
"stageTimestamp"”: "2020-12-03716:55:10.357789z"

knowledge portal

Audit Policy

Audit policy defines rules about what events should be recorded and what data they should

include.
Audit Levels Description
None don't log events that match this rule.
Metadata Log request metadata (requesting user, timestamp, resource, verb, etc.)
but not request or response body.
Request Log event metadata and request body but not response body.
RequestResponse Log event metadata, request and response bodies.

knowledge portal

Important Flags

Audit Configuration Description
-audit-policy-file Path to the file that defines the audit policy configuration.
-audit-log-path Specifies the log file path that log backend uses to write audit
events.
--audit-log-maxage Maximum number of days to retain old audit log files
--audit-log-maxbackup Maximum number of audit log files to retain
--audit-log-maxsize Maximum size in MB of the audit log file before it gets rotated

knowledge portal

Setting Up kubeadm

Understanding the Need

allows us to provision a secure Kubernetes cluster quickly.

Kubernetes 1
Master !

I
I
1
1
: 1 P
1 1
1 kube-controller- cloud-controller
: I manager I manager)
I
| A A
1
1 V
1
1

1
> I !
n 1
1 > kubelet kubelet kubelet
o 1 i
» 1 1
! = kube-proxy kube-proxy kube-proxy

v, : 1 —
II | | IEI
1 1
1 1
kube-scheduler ! ! E
1 1
1 1
1
1

Two Part to Remember

First important component is Kubernetes

Second component is Kubernetes \Worker Node

1
kube-proxy kube-proxy :

i (o

i | ubernetes
e Mimons -~ - """ """ ---~----

Taints and Tolerations

Understanding Taint

Taint is a property added to a node that repels certain pods

Worker Node 1 Worker Node 2

Understanding Tolerations

In order to schedule into the worker node with taint, you need a special pass.
This special pass is called Toleration.

special-pass

Welcome!

Worker Node 1

Worker Node 2

Defining a Taint

You can use the command to add a taint to a node.

A taint consists of a key, value (optional), and effect.

root@kubeadm-2:~# kubectl taint node worker-01 key=value:NoSchedule
node/worker-01 tainted

Effects in Taints

Effects Description

NoSchedule Prevents scheduling of new pods on the node unless they tolerate the taint.

PreferNoSchedule | Tries to avoid scheduling new pods on the node, but does not enforce it strictly.

NoExecute Evicts existing pods and prevents new pods from being scheduled on the node.

I' pod-tolerate.yaml

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:
- name: nginx-container
image: nginx
tolerations:
- key: "example-key"
operator: "Exists"
effect: "NoSchedule"

Deﬁning Toleration - Structure

Component Description Important Pointers
key The taint key that the toleration
applies to. This is used to match
a taint on a node.
operator Defines the relationship - Equal: The toleration matches if the key and
between the key and the value. value are equal.
- Exists: The toleration matches if the key exists,
regardless of the value.

effect Specifies the effect of the taint.

value The value associated with the Any string value that matches the value of the

key that the toleration applies to.

taint

Revising the Concept

Taints repel pods, and tolerations allow exceptions.
A pod without a toleration for a node's taint will not be scheduled on that node.

Taints are applied to nodes, while tolerations are applied to pods.

Kubelet Security

Basics of Kubelet API

The provides a set of endpoints that allow users to interact with the
Kubelet to retrieve information about the node, running pods, and container
statuses.

Accessing Kubelet API

The Kubelet APl is available on each node at:

https://<node-ip>:10250/

root@worker:~# netstat -ntlp
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp (] 9 127.0.0.1:9099 0.0.0.0:* LISTEN 4148/calico-node
tcp (2] 0 0.0.0.0:179 0.0.0.0:* LISTEN 4361/bird

tcp 0 © 127.0.0.53:53 0.0.0.0:* LISTEN 677/systemd-resolve
tcp 0 © 127.0.0.54:53 0.0.0.0:* LISTEN 677/systemd-resolve
tecp (2] 0 127.0.0.1:41117 0.0.0.0:* LISTEN 2170/containerd
tcp (2] 0 127.0.0.1:10248 0.0.0.0:* LISTEN 3232/kubelet

tcp (2] 0 127.0.0.1:10249 0.0.0.0:% LISTEN 3452 /kube-proxy
tcp6 0 0 :::22 e LISTEN 1/init

tcp6 0 © :::10256 RS g LISTEN 3452 /kube-proxy
tcpb 0 0 :::10250 Sk LISTEN 3232/kubelet

tcp6 (%) 0 :::32647 S LISTEN 3452 /kube-proxy

Understanding the Challenge

If kubelet is misconfigured, the Kubelet APl can be accessible to everyone over
internet without authentication.

C:\>curl -k https://143.244.140.236:10250/pods
{"kind":"PodList", "apiVersion":"v1", "metadata™:{},"items":[{"metadata™:{"name":"csi-node-driver-sb2c4",’
de-driver-","namespace":"calico-system","uid":"1521e4e6-9270-43d4-930e-cf838fdee7f3", "resourceVersion”:"’
estamp”:"2025-02-10T08:25:28Z", "labels" : {"app.kubernetes.io/name":"csi-node-driver"”, "controller-revisior
k8s-app":"csi-node-driver"”,"name":"csi-node-driver"”, "pod-template-generation”:"1"}, "annotations":{"cni.j
ainerID":"1c5861184ac3d7129f63d4c265487eb543149359a55e08e71d2a85612b875bf3", "cni.projectcalico.org/podIf
,cni.projectcalico.org/podIPs":"192.168.171.65/32","kubernetes.io/config.seen":"2025-02-10T08:35:33.09:
io/config.source":"api"}, "ownerReferences":[{"apiVersion":"apps/v1l", "kind":"DaemonSet", "name":"csi-node-
56-7957-4e0f-9fd9-5d7d70730b73", "controller”:true, "blockOwnerDeletion”:true}], "managedFields" : [{"manager
nager", "operation”:"Update”, "apiVersion":"v1","time":"2025-02-10T08:25:28Z" , "fieldsType":"FieldsV1l", "fie
{"f:generateName”:{},"f:labels":{".":{}, "f:app.kubernetes.io/name":{}, "f:controller-revision-hash":{}, "1
:{},"f:pod-template-generation”:{}}, "f:ownerReferences"”:{".":{}, "k:{\"uid\":\"dc88f756-7957-4e0f-9fd9-5¢

f:spec":{"f:affinitv":{".":{}."f:nodeAffinitv":{".":{}."f:reauiredDuringSchedulingIgnoredDuringExecutior

Anonymous Authentication

Anonymous authentication in Kubernetes allows unauthenticated requests to the
Kubelet API.

It is primarily used as a fallback mechanism when no other authentication
method is provided.

apiVersion: kubelet.config.k8s.io/vlbetal
authentication:

anonymous:
enabled: false

Kubelet supports different authorization modes to control which requests are

allowed.

Authorization Mode

Feature

AlwaysAllow

WebHook

Security Level

Low (No authorization)

High (Centralized
authorization)

Use Case

Development, testing

Production, fine-grained
access control

Authorization Mechanism

Allows all requests

Uses an external webhook
to decide

Recommended for
Production?

No

Yes

Client Certificates

When a client (such as kube-apiserver or other components) connects to the
kubelet API, it must present a TLS certificate.

The kubelet verifies the presented client certificate against the CA certificate
stored defined through clientCAfile option.

apiVersion: kubelet.config.k8s.io/vlbetal
authentication:
X509:

clientCAFile: /etc/kubernetes/pki/ca.crt

HTTPS for Kubelet

The and allow you to specify path of certificate
and key used for serving HTTPS request at kubelet.

If --tls-cert-file and --tls-private-key-file are not provided, a self-signed certificate
and key are generated.

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 9067462728377425652 (0x7dd6194f5bo7def4)
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN = worker-ca@1739175928
Validity
Not Before: Feb 10 ©7:25:27 2025 GMT
Not After : Feb 10 ©7:25:27 2026 GMT
Subject: CN = worker@1739175928
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)

Verify Platform Binaries

Basic of Hashing

Hashing is a one-way function that maps data of arbitrary size (often called the
"message") to a bit array of a fixed size (message digest)

cryptographic

DFCD 3454 BBEA 788A 751A

S hash 696C 24D9 7009 CA99 2D17
function

LB cryptographic 0086 46BB FBTD CBE2 823C

JHINPSIONE hash ACC7 6CD1 90B1 EEGE 3ABC

the blue dog function

The rediiox cryp?grﬁphic 8FD8 7558 7851 4F32 D1C6

jumps ouer as

the blue dag ae 76B1 79A9 ODA4 AEFE 4819

[Eheedifox cryptographic FCD3 7FDB SAF2 C6FF 915F

jumps oevr hash

theblieiby . D401 COA9 7D9A 46AF FBA4S

The red fox cryptographic

8ACA D682 D588 4C75 4BF4
1799 7D88 BCF8 92B9 6A6C

jumps oer
the blue dog

hash
function

Verify Platform Binaries

To verify the integrity of the archive, you can take a hash of the archive file and
compare it with the hash value posted in the official website.

sha512sum kubernetes.tar.gz
@ kubernetes.tar.gz

—)

5d713b5c9a822d5e

Ingress

Challenge with Basic Configuration

When we use a LoadBalancer Service Type, the Load balancer forwards traffic
to a NodePort associated with a single service.

~

I

Service

Worker Node

kplabs.internal E
—)

External User

Multiple Service Scenario

In a scenario where you have multiple services for different websites, you might
have to create multiple sets of load balancers for each service. This is
expensive.

-

example.internal Cﬁ I example-service —>
kplabs.internal Cﬁ I kplabs-service —,

v

Ideal Approach

In an ideal approach,
and a logic that can route traffic accordingly.

- i

/
kplabs-service

v

E example.internal

Introducing Ingress

that routes traffic to specific services based on

rules you define.

~

/

E example.internal

w o O -Q S5 —-

kplabs-service

Reference Diagram

cluster

Ingress-managed

client ---.. ‘load balancer

Components of Ingress

There are two sub-components of Ingress:

1. Ingress Controller

2. Ingress Resource / \

/—)
(ﬁ Controller /
kplabs-service

| N)

Rules Forward

example.internal | example-service

kplabs.internal kplabs-service

Components of Ingress

An is a component that implements the rules defined in
Ingress resources.

Ingress Controller is a running application within your cluster.

Controller

Rules Forward

example.internal | example-service

kplabs.internal kplabs-service

Key Difterence Summarized

Ingress Ingress Controllers

API object (rules, configuration) Application (implements the rules)

Defines routing rules Enforces routing rules, manages traffic flow

Ingress with TLS

Understanding the Challenge

A HTTP based connection to the ingress controller is not a secure.

HTTP
8 > Controller kplabs-service pummms Pod-1

User

Ingress with TLS

TLS ensures between the client and the server

You can secure the connection by setting up TLS at Ingress level.

8 Controller ‘E kplabs-service pummms Pod-1

User

HTTPs

Point to Note

The certificates are stored in Kubernetes as Secrets, and the Ingress resource is
configured to use these secrets for HTTPS traffic.

root@kubeadm:~# kubectl describe ingress tls-ingress

Name: tls-ingress
Labels: <none>
Namespace: default
Address:
Ingress Class: nginx
Default backend: <default>
TLS:
Secret > tls-cert terminates demo.kplabs.in
Rules:
Host Path Backends

demo.kplabs.in
/ example-service:80 (192.168.45.195:80)

Certificate

Private Key

Reference Screenshot

root@kubeadm:~# kubectl describe ingress tls-ingress

Name : tls-ingress

root@kubeadm:~# kubectl describe secret tls-cert Labels: <none>
Name : tls-cert Namespace: default
Namespace: default Address:
Labels: fnoncs Ingress Class: nginx
ATIEEERSEEE Rl Default backend: <default>

: TLS:
Type: kubernetes.io/tls
7 4 > tls-cert terminates demo.kplabs.in
Data Rules:
e Host Path Backends
tls.crt: 2839 bytes -—=- ——== m--——---
tls.key: 241 bytes demo.kplabs.in

/ example-service:80 (192.168.45.195:80)

Nginx Ingress - SSL Redirect Annotation

Setting the Base

By default the 443 if TLS is
enabled for that Ingress.

NGINX assumes that once TLS is defined in the Ingress, all traffic should be
secure.

root@kubeadm:~# curl -I http://example.internal:30239
HTTP/1.1 308 Permanent Redirect

Date: Thu, 06 Mar 2025 17:14:05 GMT

Content-Type: text/html

Content-Length: 164

Connection: keep-alive

Change the Setting

To modify this behavior, you can add following to ingress resource.

- frue

networking.k8s.io/v1
Ingress

demo-ingress
default

http://nginx.ingress.kubernetes.io/force-ssl-redirect

Overview of Network Policies

Understanding the Basics

By default, Kubernetes . Network
Policies help you lock down this open communication.

Kubernetes Cluster

Understanding the Challenge

If a application inside any Pod gets compromised, attacker can essentially
communicate with all other Pods easily over the network.

4 A

Pod-2 Pod-3

_ %

Kubernetes Cluster

Ideal Scenario

You only want Pods that have genuine requirement to connect to other pods to
be able to communicate.

4 I

test-pod app-pod db-pod

- i

Kubernetes Cluster

Introducing Network Policies

Network Policies are a flow in
Kubernetes clusters.

4 A

test-pod
Source Destination Effect
app-pod db-pod Allow 200-pod
test-pod ALL Deny
Network Policies db-pod

_ %

Types of Rules

There are two types of rules supported as part of Network policies:
1. Ingress Rules (Inbound Rule)

2. Egress Rules (Outbound Rule)

Ingress (WEgreSS
-] O

Supported Filtering Entities

The entities that a Pod can communicate with are identified through a
combination of the following three identifiers:

1 . Other pOdS Network Policy: Communication Entities

2. Namespaces
3. |IP Blocks

Pod with Network Policy

Other Pods Namespaces IP Blocks

Pod Namespace .

Selected by: Selected by: Selected by:
podSelector ~ na mespaceSelector ipBlock

Example 1 - Pod Selector

Allow pods with label of role=app to connect to pods with labels of
role=database

Namespace
Pod: role=app Pod: other roles
Allowed Denied

Pod: role=database

Example 2 - NameSpace Selector

Allow Pods from Security namespace to connect to Pods in Prod nhamespace.

Security Namespace

Pod A Pod B

Allowed Allowed

Prod Namespace

A 4 A 4

Pod X Pod Y

Example 3 - ipBlock

Allow Pods from production namespace to connect to only 8.8.8.8 IP address
outbound.

Namespace: production

Pod Group: All Pods

Outbound Traffic

!

Allowed IP: 8.8.8.8

Support for Network Policy
Not all Kubernetes network plugins (CNIs) support NetworkPolicy.

The ability to enforce NetworkPolicies is a feature that must be implemented by
the CNI plugin

Some Network Plugins like Calico, Cilium, etc supports Network policy.

Some Network plugins like kubenet, Flannel does NOT support network Policy

Network Policy and Managed K8s Cluster

Most managed Kubernetes services (like AKS, EKS, GKE) come with a CNI that
supports NetworkPolicy by default.

However, it's always a good idea to check the documentation for your specific
service to confirm.

Structure of Network Policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: demo-network-policy
spec:
podSelector:
matchLabels:
env: production
policyTypes:
- Ingress
= Egress
ingress:
- from:
- podSelector:
matchLabels:
env: security
egress:
= fo:
- ipBlock:
cidr: 8.8.8.8/32

Basic Mandatory Fields

As with all other Kubernetes config, a NetworkPolicy needs the following fields:

e apiVersion
e kind
e metadata

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: demo-network-policy

Contents of Spec

NetworkPolicy spec has all the information needed to define a particular network
policy in the given namespace.

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:

name: demo-network-policy

e podSelector 2
) podSelector:
L pO|I0yTypeS matchLabels:
° IngreSS env: production
policyTypes:
® egreSS =S lngress

SRECRESS
ingress:
- from:
- podSelector:
matchLabels:
env: security
gress:

156)3

e
=

- ipBlock:
cldr:8 85888/ 32

1 - Pod Selector

Each NetworkPolicy includes a podSelector which selects the grouping of pods
to which the policy applies.

The example network policy applies to all pods that has label of env=production

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: demo-network-policy
spec:

podSelector:

matchlLabels:
env: production

Point to Note

An empty podSelector selects all pods in the namespace.

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:

name: demo-network-policy
spec:

podSelector: {}

2 - Policy Types

Each NetworkPolicy includes a policyTypes list which may include either
Ingress, Egress, or both.

The policyTypes field indicates whether or not the given policy applies to
inbound traffic to selected pod, outbound traffic from selected pods, or both

iVersion: networking.k8s.io/vl
: NetworkPolicy

name: demo-network-policy

tchLabels:
env: production
policyTypes:
- Ingress
—SEpress

3 - Ingress

Inside ingress, you can use various combinations of podSelector, nameSpace
selector etc to define the rules.

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:
name: demo-network-policy
spec:
podSelector:
Inbound traffic for Pods with label of matchLabels:
env=production will be allowed from env: production

pods with label env=security. policyTypes:
- Ingress

- Egress
ingress:
- from:
- podSelector:
matchLabels:
env: security

4 - Egress

Inside Egress rule, you can use various combinations of podSelector,
namespaceselector, ipBlock etc to define the rules.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: demo-network-policy
spec:
podSelector:
matchlLabels:

Allow Outbound Traffic only to IP -env: production
address of 8.8.8.8 for Pods having po%liﬂzz‘
label of env=production -

- Egress
ingress:
- from:
- podSelector:
matchLabels:
env: security
egress:
- to:
- ipBlock:
cidr: 8.8.8.8/32

Role of from and to

Used in an Ingress rule.
Specifies the sources of incoming traffic allowed to the selected pods.

Sources can be other pods, namespaces, or IP blocks.

to

Used in an Egress rule.
Specifies the destinations of outgoing traffic allowed from the selected pods.

Destinations can be other pods, namespaces, or IP blocks

Practical - Network Policies

Example 1 - Block All Ingress and Egress

Since no specific rules are defined for ingress or egress, Kubernetes denies all
traffic by default

apiVersion: networking.k8s.io/v1 Network Policy: Default Deny Ingress & Egress
kind: NetworkPolicy
metadata: N
name: default-deny-all ingress Traffi Namespace Pods
namespace: production
spec:
podSelector: {}
policyTypes: e
= ingress Namespace Pods
~NEEress

AND

Both incoming (ingress) and outgoing (egress) traffic are blocked by default

Points to Note - podSelector

This means the policy applies to all pods in the namespace because the selector
is empty (matches all pods).

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:
name: allow-ingress
spec:

podSelector: {}
ingress:

= ol
policyTypes:

- Ingress

Network Policy: Allow All Ingress Traffic

All Pods in Namespace

Ingress Sources

Pod Selector Empty = Selects all pods
Ingress Rule Empty = Allows all ingress
Policy Type Ingress only

This policy allows all incoming traffic to all pods in the namespace

Points to Note

The empty {} means that there are no restrictions on the source of the traffic
(any source is allowed).

Network Policy: Isolate Suspicious Pods

Namespace

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy . . .

metadata: ke vamel ke pora e

name: suspicious-pod
spec: Pod Selector: role: suspicious
podSelector: Policy Types: Ingress Egress
matchLabels:
role: suspicious

n-0-8
- Ingress
= Egress

Policy Effect:

All incoming and outgoing traffic is blocked for pods with label role: suspicious
Other pods in the namespace are unaffected

Example 4 - PodSelector

Allow pods with label of role=app to connect to pods with labels of
role=database

Namespace
Pod: role=app Pod: other roles
Allowed Denied

Pod: role=database

Example 5 - Namespace Selector

Allow Pods from Security namespace to connect to Pods in Prod nhamespace.

Security Namespace

Pod A Pod B

Allowed Allowed

Prod Namespace

A 4 A 4

Pod X Pod Y

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:
name: namespace-eselector
namespace: production
spec:
podSelector: {}

ingress:
- from:
- namespaceSelector:
matchLabels:

kubernetes.io/metadata.name:

policyTypes:
=N Ingress

security

Example 6 - ipBlock

Allow Pods from production namespace to connect to only 8.8.8.8 IP address
outbound.

Namespace: production

Pod Group: All Pods

Outbound Traffic

!

Allowed IP: 8.8.8.8

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: outbound-8888

spec:
podSelector: {}

egress:
- to:
- ipBlock:
cidr: 8.8.8.8/32
policyTypes:
- Egress

Network Policies - Except, Port and Protocol

Except

The field in a Kubernetes NetworkPolicy allows you to define exceptions
to a broader rule.

Following policy allows ingress for cidr range of 172.17.0.0/16 except the range
of 172.17.1.0/24

1dr:e172 .17 .0.0/16

avean T o

(@)

ALCT LU Lo

172.17.1.0/24

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:
name: except-ingress
spec:
podSelector:
matchLabels:
role: database
ingress:
- from:
- ipBlock:
cidr: 172.17.0.0/16
except:
- 172.17.1.9/24
policyTypes:
- Ingress

Ports and Protocol

When writing a NetworkPolicy, you can target a port or range of ports.

egress:
SO
- ipBlock:
cidr: 10.0.0.0/24
ports:
- protocol: TCP
port: 32000

endPort: 32768

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: multi-port-egress
namespace: default
spec:
podSelector:
matchLabels:
role: db
policyTypes:
- Egress
egress:
=~ to:
- ipBlock:
cidr: 10.0.0.0/24
ports:
- protocol: TCP
port: 32000
endPort: 32768

Kubeadm - Structure

Basic Structure

The directory is critical, as it holds all the essential manifest files
and certificates needed for the functioning of your Kubernetes cluster's
components.

root@kubeadm:~# 1s -1 /fetc/kubernetes/

total 44

-rw------- 1 root root 5658 Mar 7 17:11 admin.conf

-rW------- 1 root root 5682 Mar 7 17:11 controller-manager.conf
-rW------- 1 root root 1974 Mar 7 17:12 kubelet.conf

drwxrwxr-x 2 root root 4096 Mar 10 ©2:52

drwxr-xr-x 3 root root 4096 Mar 7 17:11

-rwW------- 1 root root 5630 Mar 7 17:11 scheduler.conf
-rW------- 1 root root 5682 Mar 7 17:11 super-admin.conf

Certificates

kubeadm generates certificate and private key pairs for different purposes.
Certificates are stored by default in

root@kubeadm:
total 60

SRW_E ==
-rW------- 1
-rw-r--r-- 1
= Eesssss 1
SRW=RSERe el
W 1
-rw-r--r-- 1
W al
drwxr-xr-x 2
S WSS
SRW=—== = il
== lpeslpiee
-rW------- 1
CRW o 1
-PW------- 1

~# 1s -1 /etc/kubernetes/pki/

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

1123
1679
1176
1679
1281
1679
1107
1675
4096
1123
1679
1119
1679
1679

451

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

NN NSNSNSNSNSNNSNNNNNN

17:
17:
17:
17:
17:
17:
17:
17:
17:
7%
17:
17:
17:
17:
17:

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

apiserver-etcd-client.crt
apiserver-etcd-client.key
apiserver-kubelet-client.crt
apiserver-kubelet-client.key
apiserver.crt

apiserver.key

ca.crt

ca.key

front-proxy-ca.crt
front-proxy-ca.key
front-proxy-client.crt
front-proxy-client.key
sa.key

sa.pub

Certificates Mounted in Static Pods

The generated certificates are mounted in appropriate static pods using volume
mounts.

volumes:
- hostPath:
path: /etc/ssl/certs
type: DirectoryOrCreate
name: ca-certs
- hostPath:
path: /etc/ca-certificates
type: DirectoryOrCreate
name: etc-ca-certificates
- hostPath:
path: /etc/kubernetes/pki
type: DirectoryOrCreate
name: k8s-certs

Kubeconfig file - Admin

A kubeconfig file for kubeadm to use itself and the admin,
/etc/kubernetes/admin.conf

With this file, the admin has full control (root) over the cluster.

root@kubeadm:~# cat /etc/kubernetes/admin.conf
apiVersion: vi
clusters:
- cluster:

certificate-authority-data: LS@tLS1CRUdJITiBDRVJIUSUZIQOFURSOtLSOtC
mNOQVF FTEJRQXdGVEVUTUJFROEXVUUKQXhNS2EzVmlaWEp1W1lhSbGN6QWVGdzB5T1RBek
dOVkIBTVRDbXQxWW1WeWJtVjBaWE13Z2dFaU1BMEdDU3FHU®1iMORRRUJIBUVVBQTRIQkR
xd1ZaZE82Y1R1emdpUTdYVktOSXUxbOhzM1ZSNXgKZGIObFZsblRieVhnakl4bCtkNWtF
QgpA4UkzZaNnI5QX1NU3RWNUhPMzgrQ@RHRWozL1dPeF 10NFBCZm52YkQ3RzQ4M3hINi92V:
H1DK2XNQTRRNX1sR3NjMOVqS1dOc3pORnVtMmOWQ1RVb3BVOWMKME14aFQ4Q1k5NW54an
dPM1dj cUphWQpyTVIBMG91czhuc1IuQnI4TkIXSEC2MEIRZYuQWANQKFBR2pXVEIYTUE
VTUIWROEXVWREZ1FXQkITR3plbjJ1R2grTkorRWdWUGXSN10XxNS9ZZ3jZUQVYKQmdOVkhS
QTRIQkFRRFFOMStgMmRoWgpSWEANWVhXOURMZTZRM]jFxT1NNbkFtaSs5bTJ2a203STZDV!
HFuQ3dxZE1ZS291WTBOSDRQN3czS0Qzc3QzdFNVV3psODBPbDhPAEKONE1vS3ZUM2g3c3;
EwZ3jJSTTNMW]JvdGUyOXE2a2NzRk5teApOVINsaHhYYz1lyc1BGUXFLUWMrbj13jSDRPbEt!
TRHRMUTVGdE15YVdISUtHTnZCeXp1ZmtDNzNER2xkZDdpZ0Oc2NE53ZU5ydjZ1lcnFFcTlq
LSetLSeK

server: https://167.71.227.219:6443

name: kubernetes

contexts:
- context:

cluster: kubernetes

user: kubernetes-admin

name: kubernetes-admin@kubernetes

current-context: kubernetes-admin@kubernetes

Kubeconfig file - Kubelet

A to use, /etc/kubernetes/kubelet.conf
This certificate have the following:

e CN system:node:<hostname-lowercased>
e Be in the system:nodes organization

server: https://167.71.227.219:6443
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: system:node:kubeadm
name: system:node:kubeadm@kubernetes
current-context: system:node:kubeadm@kubernetes
kind: Config
preferences: {}
users:
- name: system:node:kubeadm
user:
client-certificate: /var/lib/kubelet/pki/kubelet-client-current.pem
client-key: /var/lib/kubelet/pki/kubelet-client-current.pem

Kubeconfig file - Controller Manager

A kubeconfig file for controller-manager is /etc/kubernetes/controller-manager.conf

This file should have the CN system:kube-controller-manager

server: https://167.71.227.219:6443
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: system:kube-controller-manager
name: system:kube-controller-manager@kubernetes
current-context: system:kube-controller-manager@kubernetes
kind: Config
preferences: {}
users:
- name: system:kube-controller-manager
user:

Kubeconfig file - Scheduler

A , letc/kubernetes/scheduler.conf

This file should have the CN system:kube-scheduler

server: https://167.71.227.219:6443
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: system:kube-scheduler
name: system:kube-scheduler@kubernetes
current-context: system:kube-scheduler@kubernetes
kind: Config
preferences: {}
users:
- name: system:kube-scheduler

Static Pod manifests for Control Plane

for control-plane components are primarily defined in path
of /etc/kubernetes/manifests

root@kubeadm:~# 1s -1 /fetc/kubernetes/manifests/

total 16

-rwW------- 1 root root 2549 Mar 7 17:11 etcd.yaml

-rwW------- 1 root root 3892 Mar 7 17:11 kube-apiserver.yaml
-rW------- 1 root root 3394 Mar 7 17:11 kube-controller-manager.yaml

-rW------- 1 root root 1656 Mar 7 17:11 kube-scheduler.yaml

Properties for Control Plane Components - 1

All static Pods are deployed on kube-system namespace.

root@kubeadm:~# kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE

coredns-668d6bf9bc-cjhls 1/1 Running © 2d1oeh
coredns-668d6bf9bc-xnsqgn 1/l Running © 2d16h
etcd-kubeadm 1/1 Running © 2d1eh
kube-apiserver-kubeadm 1/41 Running © 2d16h
kube-controller-manager-kubeadm 1/1 Running © 2d1oeh
kube-proxy-whxsh 1/1 Running © 2d1eh
kube-scheduler-kubeadm 1/1 Running © 2d106h

Properties for Control Plane Components - 2

All static Pods get tier:control-plane and component:{component-name} labels.

root@kubeadm:~# kubectl get pods --show-labels -n kube-system

NAME

coredns-668d6bf9bc-cjhls
coredns-668d6bf9bc-xnsqgn
etcd-kubeadm
kube-apiserver-kubeadm
kube-controller-manager-kubeadm
kube-proxy-whxsh
,pod-template-generation=1
kube-scheduler-kubeadm

READY
1/1
1/1
1/1
1/1
1/1
1/1

1/1

STATUS

Running
Running
Running
Running
Running
Running

Running

RESTARTS
0

[RGB

®

AGE

2d16h
2d16h
2d1eh
2d16h
2d16h
2d16h

2d1eh

LABELS

k8s-app=kube-dns,pod-template-hash=668d6bf9bc
k8s-app=kube-dns,pod-template-hash=668d6bf9bc
component=etcd,tier=control-plane
component=kube-apiserver,tier=control-plane
component=kube-controller-manager,tier=control-plane
controller-revision-hash=7bb84c4984,k8s-app=kube-proxy

component=kube-scheduler,tier=control-plane

Kubelet Configuration

Kubelet is configured on the host system and is managed using systemd.

Path to kubelet config file: /var/lib/kubelet

root@kubeadm:~# 1s

total 48

drwx------ 2 root
SEW-F=—R- =B INroot
SPwer— Pl root
SEN== 1 root
drwxr-xr-x 2 root
-rw-r--r-- 1 root
-rW------- 1 root
drwxr-xr-x 2 root
drwxr-x--- 3 root
drwxr-x--- 2 root
drwxr-x--- 2 root
drwxr-x--- 18 root

-1 /var/lib/kubelet/

root 4096 Mar
root 1123 Mar
root 1123 Mar 1
root 62 Mar 17:11 cpu_manager_state
root 4096 Mar 17:28

7 17:11
7
0
7
7
root 150 Mar 7 17:11 kubeadm-flags.env
7
7
7
7
7
(%]

17:11 config.yaml
12:51

root 61 Mar 17:11 memory_manager_state
root 4096 Mar 17:11
root 4096 Mar 17:12
root 4096 Mar 17:13
root 4096 Mar 17:28
root 4096 Mar 10 12:55

Mark Control Plane Node

As soon as the control plane is available, kubeadm executes following actions:

1. Label the control-plane node with

2. Taints the node with node-role.kubernetes.io/control-plane:NoSchedule

http://node-role.kubernetes.io/master=

Kubeadm - Troubleshooting

Setting the Base

You should be familiar with based clusters.

=0
Kubeadm FIX

O——TECH —>°

Kubelet Logs

You can check the using journalctl

root@kubeadm:~# journalctl -u kubelet -f

Mar 10 04:09:40 kubeadm kubelet[13096]: E©310 ©4:09:40.876232 13096 controller.go:145] "Failed to ensure
retry"” err="Get \"https://167.71.227.219:6443/apis/coordination.k8s.io/v1l/namespaces/kube-node-lease/leas
10s\": dial tcp 167.71.227.219:6443: connect: connection refused" interval="7s"

Mar 10 04:09:42 kubeadm kubelet[13096]: 10310 04:09:42.533857 13096 scope.go:117] "RemoveContainer" cont

02be267f0c03fb9c2d4e17815f7e4d7ad15cell7c060483d2a854f"

Mar 10 04:09:42 kubeadm kubelet[13096]: E0©310 04:09:42.534063 13096 pod_workers.go:1301] "Error syncing
"failed to \"StartContainer\" for \"tigera-operator\" with CrashLoopBackOff: \"back-off 5m@s restarting fa
ra-operator pod=tigera-operator-7d68577dc5-p76x1_tigera-operator(a95fcf@2-eb@c-4de7-a56a-3560al48faae)\""
r/tigera-operator-7d68577dc5-p76x1"” podUID="a95fcf@2-ebOc-4de7-a56a-3560al48faae"

Mar 10 04:09:42 kubeadm kubelet[13096]: 10310 ©04:09:42.534406 13096 status_manager.go:890] "Failed to ge

odUID="ec9ae59b2a9e7b371cacc628b70bdo13" pod="kube-system/kube-controller-manager-kubeadm” err="Get \"http
6443 /api/vl/namespaces/kube-system/pods/kube-controller-manager-kubeadm\": dial tcp 167.71.227.219:6443: c
refused”

root@kubeadm: ~#
calico-apiserver_calico-apiserver-68f8f9dob8-ttq9z_1633276f-1l1lae-4aeb-bfo9f-1e731b516b68
calico-apiserver_calico-apiserver-68f8f9d9b8-zc7kn_c9580ad9-9cb3-4251-9ff6-3deb2f6fc897
calico-system_calico-kube-controllers-8d756595-zxzxw_cf52a707-183c-484c-80ac-bde@9be27901
calico-system_calico-node-89h8v_de@defed4-f210-4311-af49-98ed933f7087
calico-system_calico-typha-787b9c4566-pfc5v_53ee8670-b69b-4b8e-820c-129371d78690
calico-system_csi-node-driver-zr542_56c77d71-62fe-4881-9282-5cd7042cac55
default_nginx-pod_©6e8edl4-b7a3-4dde-88f4-0aade2218189

default_privileged-pod 2bb337ea-56a9-48b2-98b9-4955de35e9cf
kube-system_coredns-668d6bf9bc-cjhls_a4723c92-5696-490c-81fb-29c5a5cc8c89
kube-system_coredns-668d6bf9bc-xnsqn_2783dd9f-3019-441a-860a-445e20519%¢eae
kube-system_etcd-kubeadm_ed465a6538f60c0c332edbcofa5764e4

kube-system kube-apiserver-kubeadm 9ced367dde09364d5f7175f54768a567
kube-system_kube-controller-manager-kubeadm_ec9ae59b2a%e7b371cacc628b70bdo13
kube-system_kube-proxy-whxsh_3722719e-9010-4810-8bb9-57084d8ed27c
kube-system_kube-scheduler-kubeadm_2e41779e83593bc084841f6def231e10
tigera-operator_tigera-operator-7d68577dc5-p76x1_a95fcf02-ebOc-4de7-a56a-3560al48faae

Pod Specific Logs - Better Way

You can directly check the /var/log/containers that has symlink to the latest log
file for Pods.

root@kubeadm:~# 1s -1 /var/log/containers/

total 88

lrwxrwxrwx 1 root root 124 Mar 7 17:13 calico-apiserver-68f8f9dob8-ttq9z_calico-apiserver_calico-apiserver
24d7d49b54a12f298adbe95f2bl00fbaf4a9cof2d2f5d44.1log -> /var/log/pods/calico-apiserver_calico-apiserver-68f8-
76f-11ae-4aeb-bf9f-1e731b516b68/calico-apiserver/0.log

lrwxrwxrwx 1 root root 124 Mar 7 17:13 calico-apiserver-68f8f9dob8-zc7kn_calico-apiserver_calico-apiserver
affdeae69atd3b79082f6dfb91a217654564d44e50cd73b.log -> /var/log/pods/calico-apiserver_calico-apiserver-68f8-
ad9-9cb3-4251-9ff6-3deb2f6fc897/calico-apiserver/0.log

lrwxrwxrwx 1 root root 133 Mar 10 04:15 calico-kube-controllers-8d756595-zxzxw_calico-system_calico-kube-coli
756462232e5a675c390177d599e4118845b4de70a8250172768f07ac.log -> /var/log/pods/calico-system_calico-kube-con-
zxzxw_ct52a707-183c-484c-80ac-bde@9be27901/calico-kube-controllers/4.log

lrwxrwxrwx 1 root root 133 Mar 10 04:17 calico-kube-controllers-8d756595-zxzxw_calico-system_calico-kube-coi
8b97741f74b7c6569466af5a3d723bB4c5a5bcOdecald4babl549bd3.1log -> /var/log/pods/calico-system_calico-kube-con-
zxzxw_cft52a707-183c-484c-80ac-bde@9be27901/calico-kube-controllers/5.1log

lrwxrwxrwx 1 root root 100 Mar 7 17:13 calico-node-89h8v_calico-system_calico-node-10bcla54124853a76c2ealf:
2ea4352c4d8737e1f3f0212.1log -> /var/log/pods/calico-system_calico-node-89h8v_d@defed4-f210-4311-af49-98ed93:
/0.log

lrwxrwxrwx 1 root root 103 Mar 7 17:12 calico-node-89h8v_calico-system_flexvol-driver-f6ecb3d4b@bec5064177
a454343f4de926e3574dalac90.log -> /var/log/pods/calico-system_calico-node-89h8v_do@defed4-1210-4311-af49-98eq
driver/0.log

lrwxrwxrwx 1 root root 100 Mar 7 17:12 calico-node-89h8v_calico-system_install-cni-e6794104433ec68777322f0:
d83982669d9c014fb98d265.1og -> /var/log/pods/calico-system_calico-node-89h8v_d@defed4-1210-4311-af49-98ed93:
/0.log

Authentication in Kubernetes

Other user

Accessing Resources in Kubernetes

To access resources in Kubernetes cluster, we have to authenticate first.

Create 10 Pods

B Kubernetes

Dude, who are you?
Authenticate first!

Analogy of AWS

In AWS, you can authenticate using multiple set of methods.

[N

Username and Passwords.
2. Access Key and Secret Keys

C:\>aws ec2 describe-security-groups Sign In

i

"SecurityGroups": [
{ Access your AWS account by user type.
"Description”: "default VPC security group”,
User t t sure?)
"GroupName": "default”, et (o Aired)
"IpPermissions”: [

Root user
{ Account owner that performs tasks requiring
= IpPr‘otocol Zoog > unrestricted access.
"IpRanges": [],
"Ipv6Ranges": [],
IAM user

"PrefixListIds": [],

User within an account that performs daily

"UserIdGroupPairs™: [tasks
i
"GroupId”: "sg-©laa5110c343f107d",)
"UserId"”: "430118823531" Email address
} username@example.com

Next

1,

Point to Note - Kubernetes

Kubernetes does not manage the user accounts natively.

Normal users cannot be added to a cluster through an API call

Kubernetes

Authentication in Kubernetes

Kubernetes supports several authentication methods such as:

Client Certificates, Static Token Authentication, Service Account Tokens etc

Create 5 pods

My token is A342G

>

Kubernetes

token

user

A342G

alice

BPRQ

bob

Example 1 - Static Token File

The API server reads bearer tokens from a file provided.

The token file is a csv file with a minimum of 3 columns: token, user name, user
uid

root@control-plane:~# cat /root/token.csv
Dem@PasswOrd#,bob,01,admins

[Service]
ExecStart=/usr/local/bin/kube-apiserver --advertise-address=165.22.212.16 --etcd-cafile=/root/certificates/ca.crt --etcd-cert

file=/root/certificates/etcd.crt --etcd-keyfile=/root/certificates/etcd.key --etcd-servers=https://127.0.0.1:2379 --service-a
ccount-key-file=/root/certificates/service-account.crt --service-cluster-ip-range=10.0.0.0/24 --service-account-signing-key-f
ile=/root/certificates/service-account.key --service-account-issuer=https://127.0.0.1:6443 | --token-auth-file /root/token.csv

Example 2 - X509 Certificates

Uses the client certificates for authentication.

kind: Config
preferences: {}
users:
- name: kubernetes-admin
user:

client-certificate-data: LSOtLS1CRUdAITiBDRVIUSUZJIQOFURSOtLSOtCk1ISUR
QVFFTEJRQXdGVEVUTUJFROEXVUUKQXhNS2EZzVmlaWEp1WlhSbGN6QWVGdzB5T1RBeE1qVXdN
kJIBb1RGbXQxWW1WaFpHMDZZMngxYzNSbGNpMWhaRzFwYm5NeEdUQVhCZO5WQk FNVEVHADFZE
FRVUFBNE1CRHdBd2dnRUtBbO1CQVFER®1aWjkKNnQOZC9ONGhUNWpxb2p6SjRBT2J0bnRTQE
rTGtXaXoveCszTWdyREJWNGNheDJIqSOZTUOdNbU5udUZnT1INMR21GaS9yK3IyR2MyUUJaN3N
RGtOQWVzd1BIVUVQcWc1RFQ5MU50eXpiUHd jNOUwdk EwODgKQUAYV3FKMWhTN291VmNhTmEE
2srLzFydgpubGIwWMl1rT1EwWWUsSVMU9jSEI3UEZQZ21Wb1AVWVErK2xgNEgyWWpzUKE4AUMFTT
FHalZgQlVNQTRHQTFVZER3RUIvd1FFQXdJRmOEQVRCZO5WSFNVRUREQUsKQmdnckJInRUZCU
OUINMQkNtVktpKOxadwpGWUdtWXc1aGRRWkxXNQTBHQINXRINIYjNEUUVCQ3dVQUEOSUIBUUE
TDIXdXNOUWItZ3pubUN6cndyQXpwdHZwLzFORUYOMkpTVjBpem8veWlIJWFZEVmI IMWBKSVIE
nVabEdYZDYxbUNZTkwyckdpeE9BZgpOLOR30UZVcVdtcnVsaUplcEJOMHNBeVZ4dUUxSDNYL
1xMDNiUjdTUUY2NGV5SHB4SUt4QnoyNWI3cVhETytEdnJjR3piUESECWIOWUGFidWJZQzBKdL
vNktzdZ5z0OUl1gMEdBCFFER1YzUGdoejU5Ci0tLSOtRUSEIENFUIRIRk1IDQVRFLSOtLSOK

client-key-data: LSOtLS1CRUdITiBSUOEgUFJIVKFURSBLRVktLSOtLQpNSUlFb2d
aWerdnF3RXpvVS9Sall5TFNWCNJZUVVicCs1cCtIdk1Qb21RZDRQTXBDNUZvcy84ZnR6SUL3

Categories of Users

Kubernetes Clusters have two categories of users:
1. Normal Users (for humans)

2. Service Accounts (for apps)

BE% Normal users

Kubernetes

+ Service Accounts

Authorization

Basics of Authorization

is the process of determining what an authenticated user or entity
is allowed to do

Delete All the Servers

AWS Account

New AWS User

You don’t have permissions

Authorization in Kubernetes

Kubernetes

Usually, a client making a request must be authenticated (logged in) before its
request can be allowed.

Kubernetes

Authentication pessssss Authorization Resources

Authorization Modes

The Kubernetes API server may authorize a request using one of several
authorization modes. Some of these include:

Authorization Mode

Description

AlwaysAllow

This mode allows all requests, which brings security risks.

Use this authorization mode only for testing.

AlwaysDeny

This mode blocks all requests.

Use this authorization mode only for testing.

Defines set of permissions based on which access is granted.
Recommended for Production.

Point to Note

In Kubernetes, if the authorization mode is not explicitly defined in the API server
configuration, the default mode used is AlwaysAllow.

User makes a request
to API Server

£+ Which Authorization
Mode?

¥ AlwaysAllow . AlwaysDeny
@ Request is Always @ Request is Always
Allowed Denied

it has ‘get’
Wy User is cluster-admin & Dev-e dpsteue
(permission on pods

6 RBAC

© User lacks required role

I

B Check RBAC Policies

A ServiceAccount has

RoleBinding

'

 Unknown user

D

@ Access Granted @ Access Granted

@ Access Denied

@ Access Granted

@ Access Denied

Role-Based Access Control (RBAC)

Setting the Base

RBAC allows us to control what actions users and service accounts can perform
on resources within your cluster.

Access Granted

[User Request }—D[Authentication }—P{ RBAC Check

& Access Denied

Basic Workflow

In the below diagram, we have a list of users in Table 1 and list of permissions in
Table 2.

We have to bind these together for users to get the defined permissions.

Users Bind Permissions
Alice List Pods
Bob Create, Delete
Secrets

3 Important Concept

Role defines a set of permissions.
Subjects can be user, groups, service account.

RoleBinding ties the permission defined in the role to subjects like Users.

Subjects

RoleBinding e
Jsers <€ >3 List Pods
Group Create, Delete
: Secrets
Service Account

Introducing Roles

A Role always sets permissions within a particular namespace.

Namespace Scope

Defines the boundary for Role permissions

Role Definition

Groups related permissions for resources

Permissions

GET pods LIST namespaces

CREATE secrets WATCH pod logs

Introducing RoleBinding
RoleBinding associates a Role with a user, group, or service account within a

specific namespace.

It grants the defined permissions to the subjects in that namespace.

Namespace Scope

Defines the boundary for Role permissions

Role Definition RoleB|nd | ng
Groups related permissions for resources
>
Permissions

GET pods LIST namespaces

CREATE secrets WATCH pod logs

ClusterRole and ClusterRoleBinding

Similar to Role and RoleBinding, but the main difference is that the permissions
granted by a ClusterRole apply across all namespaces in the cluster.
ClusterRoleBinding connects ClusterRole to Subjects.

Cluster-wide Scope

Applies across all namespaces in the cluster

ClusterRole Definition ClusterRoleBindi ng 8

Defines cluster-wide permissions for cluster-scoped

resources :
>
Cluster-wide Permissions

T persistent

LIS
volumes

GET nodes

storage

MANAGE
classes

UPDATE CRDs

Practical - Role and RoleBinding

Basic Structure of Role Manifest

The following image represents the basic structure of the first part of a Role
manifest file.

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:

name: pod-read-only

namespace: default

Defining Rules in Role Manifest

The rules field is a list of policies that define the permissions granted by the
Role.

Each rule specifies which actions (verbs) are allowed on which resources (API
objects).

apiVersion: rbac.authorization.k8s.io/v1l
kind: Role
metadata:
name: pod-read-only
namespace: default
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["list"]

1 - API Groups

apiGroups specify which API group the rule applies to.

Kubernetes APIs are categorized into different API groups.

API Groups Description
" (empty string) Refers to the core API group (e.g., pods, services, configmaps etc).
apps Refers to the apps API group (e.g., deployments, daemonsets,replicasets)
batch Includes Jobs, CronJobs.
networking.k8s.io Handles Ingress and Network Policies.

2 - Resources

This field specifies which Kubernetes resources the rule applies to.

These resources belong to the specified API group.

C:\>kubectl api-resources --api-group="apps"”

NAME SHORTNAMES APIVERSION NAMESPACED KIND
controllerrevisions apps/vl true ControllerRevision
daemonsets ds apps/vl true DaemonSet
deployments deploy apps/vl true Deployment
replicasets rs apps/vl true ReplicaSet

statefulsets sts apps/vl true StatefulSet

3 - Verbs

Verb specifies what actions (operations) are allowed on the specified resources.

Common Verbs Description
get Read a specific resource.
list List all resources of that type.
create Create a new resource.
delete Modify an existing resource.
update Remove a resource.
watch Observe changes to a resource.

Structure - RoleBinding

While defining RoleBinding, we have to define subjects and Role Reference.

apiVersion: rbac.authorization.k8s.io/v1l

kind: RoleBinding
metadata:
name: pod-rolebinding

subjects:
> - kind: User
Subjects RoleRef
name: bob

apiGroup: rbac.authorization.k8s.io
roleRef:
kind: Role

name: pod-read-only
apiGroup: rbac.authorization.k8s.io

Generate Role Manifest File

C:\>kubect

apiVersion:

kind: Role

metadata:
creationTimestamp: null
name: pod-reader

rules:

- apiGroups:

rbac.authorization.k8s.io/v1l

resources:
- pods
verbs:
- list

Generate Role Binding Manifest File

C:\>kubectl create rolebinding pod-reader --role=pod-reader --user=bob --dry-run=client -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
creationTimestamp: null
name: pod-reader
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: pod-reader
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: bob

Practical - ClusterRole and ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRole
metadata:

name: pod-read-only

rules:

- apiGroups: [""]
resources: ["pods"]
verbs: ["list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: pod-rolebinding
namespace: default
subjects:
- kind: User

name: bob

apiGroup: rbac.authorization.k8s.io
roleRef:

kind: ClusterRole

name: pod-read-only

apiGroup: rbac.authorization.k8s.io

Generate ClusterRole Manifest File

C:\>kubectl create clusterrole pod-read-only --verb=list --resource=pods --dry-run=client -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

creationTimestamp: null

name: pod-read-only
rules:
- apiGroups:

resources:

- pods

verbs:

- list

Generate ClusterRoleBinding Manifest File

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
creationTimestamp: null
name: pod-read
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: pod-read-only
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: bob

Service Accounts

Understanding the basics

Kubernetes Clusters have two categories of accounts:

e User Accounts (For Humans).
e Service Accounts (For Applications)

Kubernetes Cluster

Importance of Credentials

To connect to Kubernetes cluster, an entity needs to have some kind of
authentication credentials.

A

User K8s Cluster

Different Type of Credentials

Humans will use to connect to Cluster.

Pods / Applications will use Service Accounts to connect to Cluster.

Access via Service Accounts

User Accounts

K8s Cluster

Service Accounts in K8s Cluster

Various different components of Kubernetes uses service accounts to
communicate with the cluster

C:\Users\zealv>kubectl get serviceaccounts --all-namespaces

NAMESPACE NAME SECRETS AGE

default default 0 5m57s
kube-node-lease default (%) 5m57s
kube-public default (%) 5m57s
kube-system attachdetach-controller (%) 5m57s
kube-system certificate-controller (%] émls

kube-system cilium (%) 4m22s
kube-system cilium-operator (%) 4m22s
kube-system cloud-controller-manager (%) 5m54s
kube-system cluster-autoscaler (%) 5m10s
kube-system clusterrole-aggregation-controller © 5m57s
kube-system coredns (%) 102s

Service Accounts and Pods

Let’'s assume that a Service Account is associated with Pod A.

Pod A can use the token associated with the service account to perform some
actions on Kubernetes cluster.

Service Account

Service Accounts - Points to Note

Default Service Account

When you create a cluster, Kubernetes automatically creates a ServiceAccount
object named for every namespace in your cluster.

C:\Users\zealv>kubectl get serviceaccount
NAME SECREITS AGE
default o 23m

Service Account and Permissions

Each Service Account in Kubernetes can be associated with certain
permissions.

When Pod uses the service account, it can inherit the permissions.

Permissions

Read Access to Logs Service Account

Full Access to Pods

Point to Note

The default service accounts in each namespace get no permissions by default
other than the default API discovery permissions that Kubernetes grants to all
authenticated principals if role-based access control (RBAC) is enabled

Assigning Pods to Service Accounts

If you deploy a Pod in a namespace, and you don't manually assign a
ServiceAccount to the Pod, Kubernetes assigns the default ServiceAccount for
that namespace to the Pod

Default Service

Account

Accessing Service Account Token

Service Account Token gets mounted inside the Pod inside the /var/run directory
and can easily be accessed using cat command.

root@nginx:/# cat /var/run/secrets/kubernetes.io/serviceaccount/token
eyJhbGci0iJSUzIINiIsImtpZCI6I1JILZWINejIxdTh3N1Y2SjhRZHVKSEZfMWxKazFoZmttb3JLNNNTNzZTdXMifQ.eyJhdWQiOlsic31zdGVtOmtvbm51Y3Rpdm
10eS1zZXI2ZXIiXSwizZXhwIjoxNzI3NzU50TY2LCIpYXQiOjE20TYyMjM5NGYsImlzcyI6ImhOdHBZz0i8va3VizXJuzZXR1cy5kZWZhdWx@LnN2Yy5jbHVzdGVyLmx
VY2FsIiwia3ViZXJuzZXR1lcy5pbyI6eyJuYW1lc3BhY2UiOiJkZWZhdWx®IiwicGOkIjp7Im5hbWUiOiJuZ21lueCIsInVpZCI6IMU3ZjUyYWY4ALWMSMGUtNDY5Zi1i
MTg3LTc3Mj1iMmNhMmESMyJ9LCIZzZXJ2aWN1YWNjb3VudCI6eyJuYW11IjoiZGVmYXVsdCIsInVpZCI6ImZ10TUZMTQOLThjNDYtNDF1My1iODFjLTMXMThkNTNhM
ZAyOCJI9LCI3YXIuYWZOZXIi0jE20TYyMjcINZNOLCIuYmYiOjE20TYyMjM5NFYsInN1YiI6InN5c3R1bTpzZzXI2aWN1YWNjb3VudDpkZWzhdWx@0mR1ZmF 1bHQifQ
.15jS2uEbNgj_1GA6LQh2YXxQKEJsNjZbvolh-Qjf-vH_flOweKTVhmLPCL1UXCLfoI1NejTO7Agckj3SFXyjEqmlvcbEYpLXt8eUjrhC8s6Ral05XGnpbt5uly3GU
BYP4HNRE970zzU3HyU2gM14Kd8d8a9iiHb7yov82ph6moOPuuxCxBoWNo5edWMWNNDWLKLNOFX1680xAmQo8ZQI5k37INIE1oNSN2bzp7Y40Gv3CURK1X904BOYuT
UN8gSYZsHaQaVq8FT-Q_xGfGQbvjqUzi@rRaKNc9QJOBiIE3CKQN7PL6COLxyt_9LielV438xPgwer2V_aNeHBWgU99oAroot@nginx: /#

Connecting to K8s using Token

Using the Service Account Token, you can connect to the Kubernetes Cluster to
perform operations.

}root@nginx:/var/run/secrets/kubernetes.io/serviceaccount# curl -k -H “Authorization: Bearer $t" https://@f3570d8-03b7-45af-:
f4-4c1b90504be3.k8s.ondigitalocean.com/api/vil

{
"kind": "APIResourcelist",
"groupVersion": "v1i",
"resources”: [
{

"name": "bindings"”,
"singularName": "binding",
"namespaced”: true,
"kind": "Binding",
"verbs": [

"create"

]
1

Points to Note

Even though 2 Pods use same service account, each Pod will receive different

set of tokens.

Default Service

Account

Service Account Security

Understanding the Challenge

When you create a pod without specifying a service account, the Pod is
automatically assigned the default service account in the same namespace.

If the default service account is granted

, all pods using it
will inherit those privileges, potentially leading to security risks.

Mount Default service
account Token

Kubernetes

Reference Screenshot

Containers:
test-pod:
Container ID: containerd://406a23e1970c3cl4aa3f16a0d1b8432b35c3049b40fbOb46f511b0618c590bbd
Image: nginx
Image ID: docker.io/library/nginx@sha256:91734281c@ebfc6flaead979cffeed5079cfe786228a71c
Port: <none>
Host Port: <none>
State: Running
Started: Tue, 18 Feb 2025 00:45:10 +0530

Ready: True
Restart Count: ©
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-96x4x (ro)

Opt Out of Auto-Mounting Credentials

We can opt out of automounting the credentials inside the Pods in two different
approaches.

no-credentials-mounting

Service Account Level Pod Level

Disabling Auto-Mount at the Service Account Level

We can opt out of automounting API credentials for a service account by setting
automountServiceAccountToken: false on the service account:

apiVersion: vl
kind: ServiceAccount
metadata:
name: test-sa
automountServiceAccountToken: false

Disabling Auto-Mount at the Pod Level

This can be achieved by adding adding automountServiceAccountToken: false in
Pod Spec.

apiVersion: vl
kind: Pod
metadata:
name: demo-pod
spec:
automountServiceAccountToken: false
containers:
- image: nginx
name: demo

Precedence of Auto-Mounting Settings

What if:
1. Auto Mounting is set to False at Service Account Level

2. Auto Mounting is set to True at POD Level

Answer - Clash Situation

If both the pod specification and the service account define
automountServiceAccountToken, the pod-level setting takes precedence.

Version Skew Policy

Setting the Base

In Kubernetes, different components (such as the API server, kubelet, etc)
interact with each other across various versions.

To ensure compatibility and stability, Kubernetes follows a
that defines how versions of these components can differ while still maintaining

a functional cluster.

kube-proxy kube-proxy

)
1 1
1 1
1 >
1 1
v 1 1 —
II I | & IE\

1 1
1 1

kube-scheduler ! !
L] 1
| I Kubernetes
1
!

““““““““ Mimons - - - """ """ """ --- -

Understanding the Challenge

Version skew happens whenever two components of a software system
communicate, but they aren't running at exactly the same version

While some level of skew is allowed,

API Server

v1.33

kubectl
v1.26

Kubernetes Versioning Basics

Kubernetes versions are expressed as
the minor version, and z is the patch version.

where x is the major version, y is

Format: <MAJOR>.<MINOR>.<PATCH> (e.g., v1.32.2)

Major Version

Minor Version

Patch Version

1

Ky

2

kube-apiserver and kubelet

Component

Version Skew

kube-apiserver

In highly-available (HA) clusters, the newest and oldest kube-apiserver
instances must be within one minor version.

If newest kube-apiserver is at 1.32 other kube-apiserver instances are
supported at 1.32 and 1.31

kubelet

kubelet must not be newer than kube-apiserver.
kubelet may be up to three minor versions older than kube-apiserver
Example:

kube-apiserver is at 1.32
kubelet is supported at 1.32, 1.31, 1.30, and 1.29

kube-proxy

Component

Version Skew

kube-proxy

kube-proxy must not be newer than kube-apiserver.

kube-proxy may be up to three minor versions older than kube-apiserver

kube-apiserver is at 1.32

kube-proxy is supported at 1.32, 1.31, 1.30, and 1.29

Controller Manager, Scheduler, Cloud Controller Manager

Component Version Skew

Must not be newer than the kube-apiserver instances they communicate with.

Controller

Manager They are expected to match the kube-apiserver minor version, but may be up
to one minor version older (to allow live upgrades).

Scheduler

Cloud Controller
Manager
kube-apiserver is at 1.32

kube-controller-manager, kube-scheduler, and cloud-controller-manager are
supported at 1.32 and 1.31

kubectl

Component Version Skew
kubectl is supported within one minor version (older or newer) of
kube-apiserver.
kubectl

Example:
kube-apiserver is at 1.32

kubectl is supported at 1.33, 1.32, and 1.31

Overview - Upgrading kubeadm Clusters

Setting the Base

It is important to upgrade minor versions sequentially (1.31 -> 1.32 -> 1.33 etc.)

kubeadm

kubeadm

v1.31

v1.32

Approach for Upgradation

If you plan to upgrade the Kubernetes version, you have to do it for both the
Control Plane Node and Worker Nodes.

Upgrade Control

Upgrade Worker

Node

Plane Node

Determine Version to Upgrade to

Find the latest patch release for Kubernetes using the OS package manager:

root@kubeadm-upgrade:~# apt-cache madison kubeadm
kubeadm | 1.32.2-1.1 | https://pkgs.k8s.io/core:/stable:/v1.32/deb Packages
kubeadm | 1.32.1-1.1 | https://pkgs.k8s.io/core:/stable:/v1.32/deb Packages
kubeadm | 1.32.0-1.1 | https://pkgs.k8s.io/core:/stable:/v1.32/deb Packages

kubeadm upgrade [plan, apply] - Control Plane

kubeadm upgrade plan check which versions are available to upgrade to and

validate whether your current cluster is upgradeable

Run the kubeadm upgrade apply to upgrade the version.

Upgrade to the latest stable version:

COMPONENT \[0]p]= CURRENT
kube-apiserver kubeadm-upgrade v1.31.6
kube-controller-manager kubeadm-upgrade v1.31.6
kube-scheduler kubeadm-upgrade v1.31.6
kube-proxy 1.31.6
CoreDNS vi.11.3
etcd kubeadm-upgrade 3.5.15-0

TARGET

vl
vl
vl
vl
vl

.32.2
.32.2
.32.2
.32.2
113

3.5.16-0

You can now apply the upgrade by executing the following command:

kubeadm upgrade apply vi1.32.2

Point to Note

The kubelet component is during the kubeadm upgrade apply
operation.

You have to manually upgrade kubelet.

Components that must be upgraded manually after you have upgraded the control plane with 'kubeadm upgrade apply':
COMPONENT \[0]p]3 CURRENT TARGET

kubelet kubeadm-upgrade vi.31.6 v1.32.2
kubelet kubeadm-worker-upgrade v1.31.6 v1.32.2

Projected Volumes

Setting the Base

Projected volumes
in your pod.

Secret

ST Single Mount

serviceAccountToken

downwardAPI

clusterTrustBundle

Volume Sources

volumeMounts:
- name: all-in-one
mountPath: "/projected-volume”
readOnly: true
volumes:
- name: all-in-one
projected:
sources:
- secret:
name: mysecret
items:
- key: username
path: my-group/my-username
- configMap:
name: myconfigmap
items:
- key: config
path: my-group/my-config

Linux Capabilities

Setting the Base

Processes on a Unix-like system run primarily with the permissions of either a
user account, or with root permissions.

Root User

\
ggg e

Process

Understanding the Challenge

This approach of and a normal user having
limited privilege is not a good enough model.

User John wants to start the process that requires certain privileged access.
Most organizations will grant John full access using sudo.

& Process

John l

Binds itself to Port 900

Perform 1/O port operation

Introducing Linux Capabilities

Linux Capabilities are used to allow binaries (executed by non-root users) to
perform privileged operations without providing them all root permissions.

It also allows process started with root to have limited privilege.

start process Capabilities
Process
(Privileged) CAP_NET _BIND_SERVICE

John CAP_SYS RAWIO

Binds itself to Port 900

Perform 1/O port operation

Reference Workflow

The first square represents root without capabilities before Linux kernel 2.2.
The second square represents root with full capabilities.

The third square represents root with only a few capabilities enabled.

Capabilities Available

There are wide range of capabilities available.

Capabilities Description
CAP_NET_BIND_SERVICE Bind to ports <1024
CAP_NET RAW Use raw sockets
CAP_SYS TIME Modify system clock
CAP_SYS_ADMIN Perform various administrative tasks
CAP_DAC_ OVERRIDE Bypass file permissions

Example - Ping

The command uses raw sockets to send and receive ICMP packets.
Allowing any user to create arbitrary network packets could be a security risk

Instead of giving ping full root access, ping is given only the
capability, which is the minimum required to send and receive ICMP packets.

root@k8s:~# getcap /bin/ping
/bin/ping cap_net_ raw=ep

Since

R R

Non-Privileged User

Example - Ping

capability is added to ping, even a non-privileged user
will be able to run it without any admin privileges.

Linux Capability

CAP_NET_RAW

zeal@k8s:~$ ping google.com
PING google.com (142.250.182.238) 56(84) bytes of data.

64 bytes from
64 bytes from
64 bytes from
64 bytes from

bom@7s29-in-f14.1e100.
bom@7s29-in-f14.1e100.
bom@7s29-in-f14.1e100.
bom@7s29-in-f14.1e100.

net
net
net
net

(142.250.182.238)
(142.250.182.238)
(142.250.182.238)
(142.250.182.238)

Practical - Linux Capabilities

Simple Use-Case

WEREVCE:!
In Linux, the Port 1-1023 require root privileges

Aim is to allow non-privileged user to also run the program.

Program

[Binds on Port 900]

Root User

Using Right Capability

The capability in Linux allows a process to bind to
privileged network ports (those below 1024) without requiring root privileges.

We will associate this capability with the program.

Program
[Binds on Port 900]

Non-Privileged User l

Linux Capability

CAP_NET_BIND_SERVICE

Reference Screenshot - Without Capability

The binary of does NOT have any capabilities.

If a non-privileged user tries to run it, it will result in permission denied..

zeal@k8s: $ getcap bind port 900
zeal@k8s: $ |

\

zeal@k8s: $./bind port 900
Bind failed: Permission denied

Reference Screenshot - With Capability

After the capability is added, a non-privileged user will be
able to start the process that binds to Port 900.

zeal@k8s: $ getcap bind_port 9060
bind port 900 cap net bind service=ep

Y

zeal@k8s: $./bind_port 900
Successfully bound to port 900

Security Context

Understanding the Challenge

Many times, the containers run with root user privileges.

In case of container breakouts, an attacker can get full access to the host
system.

Access

Container Host Files

Host System

Running Container with Non Root User

If the container runs with non-root privileges, it will be unable to modify the
critical host files and will have limited access to the host system.

Access
Denied

Container Host Files

Host System

Introduction to Security Context

A security context defines privilege and access control settings for a Pod or
Container.

apiVersion: vl

kind: Pod

metadata:
name: better-pod

spec:
securityContext:

5> runAsUser: 1000
runAsGroup: 1000

containers:

Run as non-privileged user

- name: better-container
image: busybox
command: ["sleep”, "36000"]

Comparison Table

Field Description Use-Case
Specifies the user ID (UID) a container's Use when you want the container to run as a specific
runAsUser process runs as. user rather than the default (commonly root).
runAsGroup Specifies the primary group ID (GID) a Use when you want the container's primary group to
container's process runs as. be a specific GID.
fsGroup Specifies a group ID (GID) for Use when you need to control file permissions for a

volume-mounted files. Files created in

mounted volumes will be owned by this GID.

shared volume (e.g., for multiple containers in a Pod).

Privileged Pods

Setting the Base

Kubernetes, by default,
and from each other.

container-1 container-2

Docker

Host Operating System

Introducing Privileged Pods

Certain workloads require elevated privileges to interact directly with the host
system's resources or kernel capabilities.

This is where "Privileged Pods" come into play.

container-1 container-2

Interact with Host Docker

Resources _

Host Operating System

Why use Privileged Pods?

Tasks that require direct hardware access, such as loading kernel modules,
manipulating network devices (e.g., creating custom network interfaces), or
accessing specific device files.

Some networking tools that need deep system access to manage network
interfaces, routing tables, or firewalls.

Example - Access to Host Device

/ # ls /dev
core mgueue pts stderr termination-log zero
fd null random stdin tty
fall ptmx shm stdout urandom
Non-Privileged Pod (Top) vs Privileged Pods (Bottom)
/ # 1s /dev
autofs loop7 tty tty28 tty48 ttyS1 vcsul
btrfs-control mapper ttyo tty29 tty49 ttyS2 vcsu2
bus mem ttyl tty3 tty5 ttyS3 vcsu3
core mnqueue ttyle tty30 tty50 uhid vcsud
cpu_dma_latency net ttyll tty31 tty51 uinput vcsu5s
cuse null ttyl2 tty32 tty52 urandom vcsub
fd nvram ttyl3 tty33 tty53 userfaultfd vda
full port ttyld tty34 tty54 vcs vdal
fuse ppp ttyl5 tty35 tty55 vcsl vdal4
hpet psaux ttyle tty36 tty56 vcs2 vdals
hwrng ptmx ttyl7 tty37 tty57 vcs3 vdb
input pts ttyl8 tty38 tty58 vcs4 vfio
kmsg random tty19 tty39 tty59 vcs5 vga_arbiter
kvm rfkill tty2 tty4d tty6 vcs6 vhci

loop-control rtcoe tty20 tty40 tty60 vcsa vhost-net

e W W W W W e W e W W W W W W W W W Wy |

/ # dmesg
dmesg: klogctl: Operation not permitted

OO0 P00 OOPOIOO®OO®O®

Example - dmesg

Non-Privileged Pod (Top) vs Privileged Pods (Bottom)

.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000005]
.001065]
.003421]

BIOS-provided physical RAM map:

BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:

[mem
L E
[mem
[mem
E
[mem
[mem

0x0000000000000000 - 0x000000000009fbff]
0x000000000009f c00-0x000000000009]
0x0000000000010000 -0x00000000000T T]
0x0000000000100000-0x000000007 ffdafff]
0x000000007ffdb000 -0x000000007 F Fff{{f]
0x00000000feffc000-0x00000000feffffff]
0x00000000f fc0000-0x00000000f Ffff{f]

printk: bootconsole [earlyser®] enabled
NX (Execute Disable) protection: active
SMBIOS 2.8 present.

DMI: DigitalOcean Droplet/Droplet, BIOS 20171212 12/12/2017
Hypervisor detected: KVM

kvm-clock: Using msrs 4b564d01 and 4b564deeo
kvm-clock: using sched offset of 3783394224 cycles
clocksource: kvm-clock: mask: exffffffffffffffff max_cycles: Oxlcd42ed4dffb,
tsc: Detected 1999.999 MHz processor

usable

reserved
reserved
usable

reserved
reserved
reserved

Deploying a Privileged Pod

You can configure a Pod to be privileged by setting privileged: true in
securityContext.

apiVersion: vl
kind: Pod
metadata:
name: privileged-pod
spec:
containers:
- image: nginx
name: privileged
securityContext:
privileged: true

Point to Note

Privileged containers are given all Linux capabilities, including capabilities that
they don't require.

In most cases, you should avoid using privileged containers, and
required by your container using the capabilities field in

the securityContext field

Set Capabilities for a Container

Setting the Base

By default, Kubernetes runs containers with a restricted set of capabilities.

If your application requires additional privileges (e.g., binding to privileged ports,
modifying network settings), you must explicitly grant them.

/ # cat /proc/1/status | grep Cap
CapInh: ©0000000000000000
CapPrm: 00000000a80425fb
CapEff: 00000000a80425fb
CapBnd: 00000000a80425fb
CapAmb: ©0000000000000000

apiVersion: vl
kind: Pod
metadata:
name: capabilities-demo
spec:

containers:
- name: sec-ctx-4
image: gcr.io/google-samples/hello-app:2.0
securityContext:
capabilities:
add: ["NET_ADMIN", "SYS_TIME"]

Add and Drop Section

The add section grants specific capabilities

The drop section removes capabilities to minimize security risks.

apiVersion: vl
kind: Pod
metadata:
name: capabilities-pod-2
spec:
containers:
- name: demo-2
image: busybox
command: ["sleep","36000"]
securityContext:
capabilities:
add: ["NET_ADMIN", "SYS_TIME"]
drop:
- ALL

Points to Note

Only add the capabilities your application actually needs.

Use drop: ["ALL"] First: Then explicitly add only required capabilities.

Admission Controllers

Setting the Base

Admission controllers that allow you to intercept, validate, and potentially modify
requests to the Kubernetes API server before they are persisted as objects in
etcd

e e Authentication ggmmmas Authorization AC%?E;'IZ? mamme K8s Object
—=

Types of Admission Controllers

Admission Controller Type Description
Validating These can only allow or deny requests based on custom rules.
Mutating These can modify requests before they are processed, in
addition to allowing or denying them.

Example 1 - Namespace AutoProvision

By default, if you attempt to create resources in a nonexistent namespace, you
will immediately encounter an error.

The iInspects all incoming
requests for namespaced resources and checks whether the referenced
namespace exists.

If the namespace does not exist, the controller automatically creates it.

C:\>kubectl run nginx --image=nginx -n unknown-namespace
Error from server (NotFound): namespaces "unknown-namespace"” not found

Example 2 - PodSecurity

The PodSecurity Admission controller enforces Pod Security Standards.

By enforcing Pod Security Standards, it ensures that pods deployed in your
cluster comply with defined security best practices.

apiVersion: vl

kind: Pod Is this good?
metadata:
name: my-pod PodSecurity Admission
spec: Controller
containers:

- name: my-container

LIRS Hell Naw. No Privileged
securityContext: containers
privileged: true

ImagePullPolicy

Setting the Base

Whenever you create a Pod in kubernetes, the kubelet component
(docker, containerd) to pull the container image from registry.

Pull

- [IIIIIII U] (0

m— container-runtime

Container Registry
Worker Node

root@kubeadm:~# crictl images

IMAGE

docker.
docker.
docker.
docker.
docker.

docker

docker

io/calico/apiserver
io/calico/cni

io/calico/csi
io/calico/kube-controllers
io/calico/node-driver-registrar

.io/calico/node
docker.
docker.
docker.
docker.

io/calico/pod2daemon-flexvol
io/calico/typha
io/library/httpd
io/library/nginx

.io/library/nginx

quay.io/tigera/operator

TAG

v3.29.
v3.29.
v3.29.
v3.29.
v3.29.
v3.29.
v3.29.
v3.29.
latest
<none>
latest
vl.36.2

R R RPRRRRRR

IMAGE ID

421726ace5edl
7dd6eal86aba®
bda8c42e04758
6331715a2ae96
8b7d18f262d5c
feb26d4585d68
2b7452b763ec8
4cb3738506f5a
f7d8bafbd9aof
9bea9f2796e23
97662d24417b3
3045aa4a360d4

SIZE
43 .5MB
97 .6MB
9.4MB
35.6MB
12MB
143MB
6.86MB
31.3MB
58.5MB
72.1MB
72.2MB
21.8MB

Introducing ImagePullPolicy

The tells Kubernetes when to pull an image from a registry.

m— container-runtime

Images Pulled {IIIIIII [T Illllll}

Available ImagePullPolicy Settings

Values Description
Always Pulls the latest image from container registry.
IfNotPresent Pulls the image only if it isn’t already present on the node.
Never Never pull the image. Instead, it assumes the image is already available on
the node.

apiVersion: vl

kind: Pod

metadata:
name: my-pod

spec:
containers:
- name: my-container
image: nginx
imagePullPolicy: Always

Clarification Point - AlwaysPulllmages

Every time the kubelet launches a container, the kubelet queries the container
image registry to resolve the name to an image digest.

If the kubelet has a , the
kubelet uses its cached image; otherwise, the kubelet pulls the image with the
resolved digest, and uses that image to launch the container.

Default Image Pull Policy

If you omit the imagePullPolicy field, and you don't specify the tag for the
container image, imagePullPolicy is automatically set to Always

If you omit the imagePullPolicy field, and you specify the tag for the container
image that isn't latest, the

Point to Note

You should

as it is harder to track which version of the image is running and more difficult to
roll back properly.

Instead, specify a meaningful tag such as v1.42.0 and/or a digest.

Admission Controller - AlwaysPulllmages

Understanding the Challenge

If a sensitive container image is downloaded to a worker node using valid
credentials, an unauthorized person can later create a new Pod using that same
image with imagePullPolicy set to 'Never', bypassing the need for authentication

credentials.
I
pull \
/Launch Container

user/pass

e

Private Registry

e

\V4
Images Pulled secret-image

root@kubeadm:~# crictl images

IMAGE

docker.
docker.
docker.
docker.
docker.

docker

docker

io/calico/apiserver
io/calico/cni

io/calico/csi
io/calico/kube-controllers
io/calico/node-driver-registrar

.io/calico/node
docker.
docker.
docker.
docker.

io/calico/pod2daemon-flexvol
io/calico/typha
io/library/httpd
io/library/nginx

.io/library/nginx

quay.io/tigera/operator

TAG

v3.29.
v3.29.
v3.29.
v3.29.
v3.29.
v3.29.
v3.29.
v3.29.
latest
<none>
latest
vl.36.2

R R RPRRRRRR

IMAGE ID

421726ace5edl
7dd6eal86aba®
bda8c42e04758
6331715a2ae96
8b7d18f262d5c
feb26d4585d68
2b7452b763ec8
4cb3738506f5a
f7d8bafbd9aof
9bea9f2796e23
97662d24417b3
3045aa4a360d4

SIZE
43 .5MB
97 .6MB
9.4MB
35.6MB
12MB
143MB
6.86MB
31.3MB
58.5MB
72.1MB
72.2MB
21.8MB

Introducing AlwaysPulllmages
This admission controller modifies every new Pod to force the image pull policy

to Always

This is useful in a multitenant cluster so that users can be assured that their
private images can only be used by those who have the credentials to pull them.

Without this admission controller, once an image has been pulled to a node, any
pod from any user can use it by knowing the image's name

Pod Security Standard

Simple Example

It is often seen that users launch privileged pods in production namespaces
even when they are not required.

4 \

k privileged: true /

Production Namespace

Example - Security Standard Set

The security team has defined the following standards for the production
namespaces.

This is more of an advisory, and enforcement is not 100% achieved.

Security Standards

Containers must run as non-root users.

Advisory

Production

HostPath volumes must be forbidden.

Namespace

Seccomp profile must not be set to Unconfined.

AppArmor profile is applied by default.

No Privileged Containers

Ideal Approach

In an ideal approach, you want any attempt to circumvent the security standards
set by the security team to be blocked automatically.

Launch Privileged Pods
Production

Namespace

Requirement

Only allow Pods that follow Security standards.

Introducing Pod Security Standards

are a set of guidelines established by Kubernetes to
ensure that Pods running in a namespace meet specific security requirements.

NN B v

Pod Request PSS Check Compliant Non-Compliant

Policies in Pod Security Standard

The Pod Security Standards

These policies range from highly-permissive to highly-restrictive.

Policies Description

Privileged Unrestricted policy, providing the widest possible level of permissions.
Allows privilege escalations

Baseline Minimally restrictive policy which prevents known privilege escalations.

Restricted Heavily restricted policy, following current Pod hardening best practices.

1 - Privileged Policy

The Privileged policy is purposely-open, and entirely unrestricted.

The Privileged policy is defined by an absence of restrictions

2 - Baseline Policy

The Baseline policy is aimed at for common containerized
workloads while preventing known privilege escalations.

Targeted at application operators and developers of non-critical applications

Operations Not Allowed (Reference purpose)

Sharing the host namespaces.
Privileged Pod
HostPath volumes and HostPorts

3 - Restricted Policy

The Restricted policy is
, at the expense of some compatibility.

Targeted at operators and developers of security-critical applications, as well as
lower-trust users.

Examples

Everything from Baseline Policy +
Containers must be required to run as non-root users.
Containers must not set runAsUser to 0
Seccomp profile must be explicitly set to one of the allowed values.

00

“—

7

Pods with Privileged Policy Pods with Restricted Policy

Where to Define Policy

The policies can be defined at a namespace level.

You can also apply it at a cluster level.

Restricted Policy

Production Namespace

Privileged Policy Development Namespace

Pod Security Admission

The (PSA) controller is a built-in admission controller in
Kubernetes that enforces the Pod Security Standards (PSS).

When a pod is created, PSA checks if it complies with the security policies set at
the namespace level.

Amazon EKS Cluster

@ pod-security.kubernetes.io/enforce: privileged
K pod-security.kubernetes.io/audit: privileged
| pod-security.kubernetes.io/warn: privileged

Apply pod resources
+ Namespace

pod-security.kubernetes.io/enforce: baseline
—l pod-security.kubernetes.io/audit: baseline

pod-security.kubernetes.io/warn: baseline

@ Namespace
. pod-security.kubernetes.io/enforce: restricted
pod-security.kubernetes.io/audit: restricted

API Server pod-security.kubernetes.io/warn: restricted

O

PSA
Admission
Controller

Namespace

Practical - Pod Security Standards

Overall Workflow

We will create 3 namespaces for each policy level as part of PSP.

We will launch ideal pod that fits PSS restrictions.

~

> privileged-ns

~

baseline-ns

restricted-ns

. %

) -

Modes - Pod Security Admission

Revising the Basics

We usually add a label on a namespace to define the appropriate pod security
standard profile.

Label Format:;

pod-security.kubernetes.io/ . <profile>

root@kubeadm:~# kubectl label namespace secured-ns pod-security.kubernetes.io/enforce=restricted
namespace/secured-ns labeled

Understanding the Modes

Modes Description
Enforce Rejects Pods with policy violations.
Audit Allows Pods with policy violations but includes an audit annotation in the audit
log event record.
Warn Allows Pods with policy violations but warns users.

Multiple Modes can be used

A namespace can configure any or all modes, or even set a different level for
different modes.

apiVersion: vl
kind: Namespace
metadata:
hame: secured-ns
labels:
pod-security.kubernetes.io/enforce: privileged
pod-security.kubernetes.io/warn: restricted

Reference Screenshot

The following image depicts the user trying to deploy the nginx pod in the
test-namespace that has two labels attached.

e pod-security.kubernetes.io/enforce: privileged
e pod-security.kubernetes.io/warn: restricted

root@kubeadm:~/test# kubectl run nginx --image=nginx -n test-namespace

Warning: would violate PodSecurity “"restricted:latest”: allowPrivilegeEscalation != false (container "nginx" must set securit
yContext.allowPrivilegeEscalation=false), unrestricted capabilities (container "nginx" must set securityContext.capabilities.
drop=["ALL"]), runAsNonRoot != true (pod or container "nginx" must set securityContext.runAsNonRoot=true), seccompProfile (po

d or container "nginx" must set securityContext.seccompProfile.type to "RuntimeDefault"” or "Localhost")

pod/nginx created

Points to Note - PSA and PSS

Mode Version

For each mode, there are two labels that determine the policy used.

Kubernetes introduces different versions of security policies (e.g v1.24, v1.25,
etc.), and the mode version indicates which set of security rules are applied.

apiVersion: vl
kind: Namespace
metadata:
name: secured-ns
labels:
pod-security.kubernetes.io/enforce: restricted
pod-security.kubernetes.io/enforce-version: v1.32

Point to note - Version not Defined

in the Pod Security Standard label, Kubernetes
will use the default version of the Pod Security Admission (PSA) policy that is
supported by the cluster.

The default version is typically the latest stable version supported by the
Kubernetes API in that release.

If later, when Kubernetes is upgraded, the Pod Security Standards may change
in newer versions. This could lead to unexpected policy enforcement changes
that might break workloads.

Workload resources and Pod templates

The like Deployments etc.
Instead, enforcement happens only when the actual Pods are created.

Example:

A workload object (like a Deployment) can be created even if its Pod template
violates security policies.

But when Kubernetes tries to create Pods from that Deployment, those Pods will
be blocked if they violate the enforced security policies.

Labels to Existing Namespace

When an enforce policy label is added or changed, the admission plugin will test
each pod in the namespace against the new policy. Violations are returned to
the user as warnings.

Existing running pods are not affected.

root@kubeadm:~/test# kubectl label namespace default pod-security.kubernetes.io/enforce=restricted

Warning: existing pods in namespace "default" violate the new PodSecurity enforce level "restricted:latest”
Warning: capabilities-pod-1 (and 3 other pods): allowPrivilegeEscalation != false, unrestricted capabilities,
true, seccompProfile

namespace/default labeled

root@kubeadm:~/test# kubectl get pods

NAME =0 STATUS RESTARTS AGE
capabilities-pod-1 1/1 Running 5 (7h3@m ago) 2d%h
capabilities-pod-2 1/1 Running 5 (7h26m ago) 2d%h
normal-pod 1/1 Running 5 (7h33m ago) 2d9h

test-pod 1/1 Running © 63s

Adding Labels with Dry Run

It is helpful to apply the --dry-run flag when initially evaluating security profile
changes for namespaces.

The Pod Security Standard checks will still be run in dry run mode, giving you
information about how the new policy would treat existing pods, without actually

updating a policy.

root@kubeadm:~/test# kubectl label --dry-run=server ns default pod-security.kubernetes.io/enforce=restricted
Warning: existing pods in namespace "default"™ violate the new PodSecurity enforce level "restricted:latest™
Warning: capabilities-pod-1 (and 3 other pods): allowPrivilegeEscalation != false, unrestricted capabilities,

true, seccompProfile
namespace/default labeled (server dry run)

Exemptions

You can

in order to allow the

creation of pods that would have otherwise been prohibited due to the policy

associated with a given namespace.

Exemptions can be statically configured in the Admission Controller
configuration via the --admission-control-config-file to kube-apiserver.

usernames

runtimeClasses

namespaces

apiVersion: apiserver.config.k8s.io/v1l
kind: AdmissionConfiguration
plugins:
- name: PodSecurity
configuration:

apiVersion: pod-security.admission.config.k8s.io/v1l
kind: PodSecurityConfiguration
defaults:
enforce: "privileged”
enforce-version: "latest"
audit: "privileged"
audit-version: "latest"
warn: "privileged"
warn-version: "latest"
exemptions:
Array of authenticated usernames to exempt.
usernames: []
Array of runtime class names to exempt.
runtimeClasses: []
Array of namespaces to exempt.
namespaces: []

Admission Controller - ImagePolicyWebHook

Understanding the Basics

The ImagePolicyWebhook admission controller allows Kubernetes to check with
an external service before allowing pods to run based on their container images.

Create Pod from mysql:latest

mysql image

> API Server

External Image Validator

Deny

Configuration File

ImagePolicyWebhook uses a configuration file to set options for the behavior of
the backend.

ImagePolicyWebHook

apiVersion: apiserver.config.k8s.io/v1l
kind: AdmissionConfiguration
plugins:
- name: ImagePolicyWebhook
configuration:
imagePolicy:
kubeConfigFile: "/etc/kubernetes/pki/webhook-kubeconfig"
allowTTL: 50
denyTTL: 50
retryBackoff: 500
defaultAllow: false

Kubernetes Secrets

HardCoding Secrets Should be Avoided

It is frequently observed that sensitive data like passwords, tokens, etc., are
hard-coded as part of the container image.

App Pod

Hardcoded Secrets |

Key Value

db_user dbadmin

db_pass A1S323#

Introducing Secret

Kubernetes Secrets is a feature that allows us to store these sensitive data.

4 I

db_pass | db12#12 key 323@4dg

Secrets

token S2A2434 pass admin@123

_)

Mount from Secret

App Pod (Prod)

Reference Screenshot

C:\>kubectl get secret
NAME TYPE DATA AGE
my-secret Opaque 1 22m

C:\>kubectl get secret my-secret -o yaml
apiVersion: vl
data:
db_pass: QTIjMTI1UGA=
kind: Secret
metadata:
creationTimestamp: "2025-01-16T702:34:21Z"
name: my-secret
namespace: default
resourceVersion: "5877928"
uid: d3c383cb-c2e3-4f9b-95ef-d1f@ec6addbe
type: Opaque

Point to Note - Part 1

By default, Secrets are not very secure as they are not stored in encrypted
format in the data store (ETCD). You can setup this configuration manually.

You can also additionally protect access to secrets using RBAC for access
control.

Store Secret pass=1234
pass=1234

ETCD

Point to Note - Part 2

When you view a secret, Kubectl will print the Secret in base64 encoded format.

You'll have to use an external base64 decoder to decode the Secret fully

C:\>kubectl get secret my-secret -o yaml
apiVersion: vl
data:
db_pass: QTIjMTI1U®GA=
kind: Secret
metadata:
creationTimestamp: "2025-01-16T02:34:21Z"
name: my-secret
namespace: default
resourceVersion: "5877928"
uid: d3c383cb-c2e3-4f9b-95ef-d1f@ec6ad4dbe
type: Opaque

Kubernetes Secrets - Practical

Two Parts of this Practical

First Part:

Create Kubernetes Secret

Second Part: Mount the Secret inside the Pod.

key

323@4dg

pass

admin@123

/
db_pass db12#12
Secrets
token S2A2434
\
Fetch from Prod
Secret

App Pod (Prod)

\

A

Use the

Examples:

Part 1 - Create Secret

command to create secret in Kubernetes.

Create a new secret named my-secret with keys for each file in folder bar
kubectl create secret generic my-secret --from-file=path/to/bar

Create a new secret named my-secret with specified keys instead of names on disk
kubectl create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa
--from-file=ssh-publickey=path/to/id_rsa.pub

Create a new
kubectl create

Create a new
kubectl create

Create a new
kubectl create

secret
secret

secret
secret

secret
secret

named my-secret with keyl=supersecret and key2=topsecret
generic my-secret --from-literal=keyl=supersecret --from-literal=key2=topsecret

named my-secret using a combination of a file and a literal
generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-literal=passphrase=topsecret

named my-secret from env files
generic my-secret --from-env-file=path/to/foo.env --from-env-file=path/to/bar.env

Different Approaches for Reference

A Pod can reference the Secret in a variety of ways, such as in a volume mount
or as an environment variable.

Access Methods

Environment Variables

Volume Mounts

Part 1 - Mount Secret Inside Pod (Volume)

Using Volume Mounts, you can mount a specific secret inside a Pod.

apiVersion: vl
kind: Pod
metadata:
name: test-pod
spec:
containers:
- name: secretmount

image: nginx

volumeMounts:

- name: secret-volume
mountPath: "/etc/secrets™
readOnly: true

volumes:
- name: secret-volume
secret:
secretName: firstsecret

Part 2 - Mount Secret Inside Pod (Env)

In this method, the values in the Secrets are exposed as environment variables
to the container.

apiVersion: vl
kind: Pod
metadata:
name: secret-env
spec:
containers:
- name: secret-env
image: nginx
env:
- name: SECRET_USERNAME
valueFrom:
secretKeyRef:
name: firstsecret
key: dbpass

Overview of Cillium

Setting the Base

Unlike traditional CNI plugins which primarily rely on iptables and IP routing,

and improving performance.

Node

@ Pod

Conntrack

iptables
FORWARD

Linux Routing

Conntrack

iptables INPUT

Linux Routing

iptables
PREROUTING mangle

iptables
POSTROUTING mangle

iptables
PREROUTING nat

. Node

@ Pod

Standard Container Networking

Socket]

Conntrack

iptables
POSTROUTING nat

Linux Routing

iptables
PREROUTING mangle

iptables INPUT

Linux Routing

iptables
PREROUTING mangle

, reducing complexity

Cilium eBPF Container Networking

\ Socket

Cilium Network Policies

provides more granularity, flexibility, and advanced
features than the standard Kubernetes network policy.

Cilium supports defining granular rulesets at Layers 3, 4, and 7 of the OSI model

Feature K8s Network Policy Cilium Network Policy
Basic L3/L4 layer isolations Yes Yes
L7 (HTTP,DNS, Kafka) No Yes
Better observability No Yes (Hubble)

Kubernetes Network Policy vs Cilium Network Policy

3 888

Kubernetes

Selectors Traffic Direction
* Pod « Ingress
* Egress

Behavior

« Null rule, default deny
« No policy, whitelist

. posture
Traffic Filtering

* Pod Labels

« Namespace Labels S
Traffic Filtering

« CIDR
« L4 protocols (TCP,
UDP, SCTP)

Selectors

« Endpoints (using pod labels)
* Node

Traffic Filtering
« Endpoints

IP/CIDR
Entities
DNS Names
Services
L4 protocols (TCP, UDP,
SCTP)
ICMP/ICMPV6 Policy
L7 protocols (HTTP, gRPC,
kafka)

Advanced rule querying
and reachability
« Host policies

Hubble in Cilium

Hubble is Cilium's observability layer, offering deep insights into your
Kubernetes cluster's network.

It's like a powerful microscope for your cluster's network traffic, allowing you to
see and understand what's happening at a granular level.

root@ubuntu:~# hubble observe --pod busybox -f

Feb 27 10:04:28.687: 54712 -> 53 to-endpoint FORWA
RDED (UDP)
Feb 27 10:04:28.688: 54712 <- 53 to-endpoint FORWA
RDED (UDP)
Feb 27 10:04:28.688: 35437 -> 53 to-endpoint FORWA
RDED (UDP)
Feb 27 10:04:28.689: 35437 <= 23 to-endpoint FORWA
RDED (UDP)
Feb 27 10:04:28.689: 46665 -> 53 to-endpoint FORWA
RDED (UDP)
Feb 27 10:04:28.689: 46665 <- 53 to-endpoint FORWA
RDED (UDP)
Feb 27 10:04:28.690: 51442 -> 55 to-endpoint FORWA
RDED (UDP)
Feb 27 10:04:28.710: 51442 <- 53 to-endpoint FORWA

RDED (UDP)

kube-system

hubble-relay

© > 4245 - TCP

hubble-ui

Columns v Flow De
Source Identity Destination Identity Destination Port L7 info
hubble-ui kube-system hubble-relay kube-system 4245 Tistangs
system hubble-relay kube-system 4245
system hubble-relay kube-system 4245
-system hubble-relay kube-system 4245
hubble-ui kube-sys hubble-relay kube-system 4245 Traffic direction
hubble-ui kube hubble-relay kube-system 4245
hubble-ui kube hubble-relay kube-system 4245
hubble-ui kube-system hubble-relay kube-system 4245 Cilium event type
hubble-ui kube-system hubble-relay kube-system 4245 1o o
hubble-u ystem hubble-relay kube-system 4245 TCP flags
ube-system hubble-relay kube-system 4245 ACK PSH
hubble-ui kube-syst: hubble-relay kube-system 4245
Source pod
hubble-ui kube hubble-relay kube-system 4245 hub Ib6Acf-It

hubble-ui ki ysti hubble-relay kube-system 4245
ubble-ui kube-system ubble-relay kube-system Source identity

hubble-ui kube-system hubble-relay kube-system 4245 3840

hubble-ui kube-system hubble-relay kube-system 4245
hubble-ui kube-system hubble-relay kube-system 4245 Source labels
hubble-ui k ystem hubble-relay kube-system 4245

Point to Note - Network Policies

Cilium implements the standard Kubernetes network policy spec. Your
Kubernetes network policies work out of the box with Cilium without any
additional changes.

Transparent Encryption

Cilium provides encryption using |Psec or WireGuard to secure communication
between workloads in a Kubernetes cluster.

Encryption ensures that traffic between pods or nodes remains confidential and
protected from interception.

{)Node

(Pod)
(Pod)

8 Encryption

Structure of Cilium Network Policies

Cilium Network Policies

provides more granularity, flexibility, and advanced
features than the standard Kubernetes network policy.

Cilium supports defining granular rulesets at Layers 3, 4, and 7 of the OSI model

Feature K8s Network Policy Cilium Network Policy
Basic L3/L4 layer isolations Yes Yes
L7 (HTTP,DNS, Kafka) No Yes
Better observability No Yes (Hubble)

Base Structure

The base structure of CiliumNetworkPolicy is similar to a traditional Network
policies in Kubernetes.

; - : . apiVersion: "cilium.io/v2"
apiVersion: networking.k8s.io/v1l . .)
Sl e kind: CiliumNetworkPolicy

metadata: metadata:
name: network-policy name: cilium-network-policy

Simple Default Deny Policy

The following policy selects all the pods in the default namespace and denies all
inbound and outbound traffic.

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
name: default-deny
spec:
empty select matches all pods in the namespace

endpointSelector: {}

no rules on ingress, deny all incoming traffic

ingress:

no rules on egress, deny all outgoing traffic
egress:

L

Match Labels

The matchlLabels field within an endpointSelector is used to select which
endpoints (pods) the policy applies to, based on their Kubernetes labels

apiVersion: networking.k8s.io/v1 apiVersion: "cilium.io/v2"
kind: NetworkPolicy kind: CiliumNetworkPolicy
metadata: metadata:
name: test-network-policy name: cilium-network-policy
spec: spec:
podSelector: endpointSelector:
matchLabels: matchLabels:

run: nginx run nginx

apiVersion: cilium.io/v2

kind: CiliumNetworkPolicy
apiVersion: "cilium.io/v2" metadata:

kind: CiliumNetworkPolicy name: database-policy
metadata: namespace: default
name: allow-from-curl spec:
spec: endpointSelector:
endpointSelector: matchlLabels:
matchLabels: tier: database

. ingress:
app: nginx
5 i : - fromCIDRSet:
ingress:

. ~cidr: 102.213.58.174/37
- fromEndpoints:

toPorts:
- matchLabels: e

app: curl ~ port: "3306"

protocol: TCP

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: allow-egress-to-payments-app
spec:
endpointSelector:

matchLabels:
run: database
egress:
- toEndpoints:
- matchLabels:

app: payment-app

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "egress-cidr-rule”
spec:
endpointSelector:
matchLabels:
app: prod
egress:
- toCIDR:
- 206.189.132.19/32

Setting the Base

We can create Cilium Network Policies to control traffic at Layer 3, Layer 4, and
Layer 7 of the OSI Model.

7. Application HTTP, DNS, FTP
6. Presentation Encryption, MIME
5. Session Session Control
4. Transport TCP/UDP, Ports

1. Physical Hardware

Cilium Network Policies - Layer 3 Rules

Setting the Base

The layer 3 policy establishes the base connectivity rules regarding which
endpoints can talk to each other.

Layer 3 policies can be specified using the following methods:

Endpoints Based

Service Based

Cilium Layer 3 Policies - > Entities Based

Node Based

IP / CIDR Based

DNS Based

Types

Description

Endpoints Based

Based on Kubernetes pod labels, allowing or denying traffic between specific
pods.

Services based

Policies are applied based on Kubernetes services, controlling traffic based on
service names rather than individual pods.

Entities Based

Policies targeting predefined entity groups like "cluster”, "host", "world", or
"all". Simplifies policy creation for common traffic patterns.

Node based

Policies define traffic rules based on the nodes in the cluster

IP/CIDR based

Policies allow or deny traffic based on specific IP addresses or CIDR blocks

Endpoint Based Policies

These policies are based on Kubernetes pod labels, allowing or restricting traffic
between specific pods within a cluster.

frontend-1 frontend-2 backend-1 backend-2

app: frontend app: backend

CiliumNetworkPolicy

Allow Pods with Label app=frontend to
connect with Pods with Label app=backend

Endpoint Based - Example

This policy allows inbound traffic from pods with label of role=frontend to connect
with Pods with label of role=backend.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "allow-from-frontend
spec:
endpointSelector:
matchLabels:
role: backend
ingress:
- fromEndpoints:
- matchLabels:
role: frontend

Endpoint Based - Example 2

An empty Endpoint Selector will select all endpoints, thus writing a rule that will
allow all ingress traffic to an endpoint may be done as follows:

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "allow-all-to-victim"
spec:

endpointSelector:

matchLabels:
role: victim
ingress:
- fromEndpoints:

- {}

Cilium Network Policies - Entities Based

Entities Based Policy

Cilium like world, host, cluster, and remote-node to
define network policies

Entities Description
world Represents any external (non-cluster) traffic, including the internet.
host Represents the local Kubernetes node (host network)
remote-node Represents other Kubernetes nodes in the cluster that are not the local
node.
cluster Represents all workload endpoints within the Kubernetes cluster. Includes
all pods across all namespaces
all Represents all possible endpoints both inside and outside the cluster.

Entities Based Policy - Example 1

Pods can communicate with other pods and services within the cluster.
Pods cannot access external IPs or the internet

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "restrict-egress-to-cluster”
spec:

endpointSelector: {} # Apply to all pods

egress:

- toEntities:
- "“cluster”

Entities Based Policy - Example 2

The following policy will allow traffic from all pods to connect to destination
outside of the cluster.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "restrict-egress-to-cluster”
spec:
endpointSelector: {}
egress:
- toEntities:
- "world"

Cilium Network Policies - Layer 4 Rules

Setting the Base

Layer 4 policy can be specified in addition to layer 3 policies or independently.

It restricts the ability of an endpoint to emit and/or receive packets on a

Ports

Cilium Layer 4 Policies - >
Protocol

Point to Note

If no layer 4 policy is specified for an endpoint, the endpoint is allowed to send
and receive on all layer 4 ports and protocols including ICMP.

Example Policy - Port

This policy allow curl-pod to connect outbound on Port 80 for the protocol of
TCP.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: allow-curl-to-nginx-service

spec:
endpointSelector:
matchLabels:
run: curl-pod
egress:
= toPorts:
- ports:
- port: "80"

protocol: TCP

Cilium Network Policies - DNS Rules

Example Policy - DNS

The following policy allows DNS resolution for domain of kplabs.in and other
domain resolutions will be blocked.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "allow-dns-kplabs"”
spec:
endpointSelector: {}
egress:
- toPorts:
- ports:
- port: "53"
rules:
dns:
- matchName: "kplabs.in"

Cilium - Deny Policies

Setting the Base

Cilium's Deny Policies allow you to explicitly block certain network traffic
between pods in a Kubernetes cluster.

, meaning that if both an allow
and deny policy exist, the deny policy will win.

CiliumNetworkPolicy CiliumNetworkPolicy

Allow outbound to internet

Deny outbound to internet

Higher Precedence

Deny Policies

ingressDeny and egressDeny are features in Cilium Network Policies that

ingressDeny Blocks specific incoming traffic, even if other policies would allow it

egressDeny Blocks specific outgoing traffic, even if other policies would allow it

Example 1 - ingressDeny

The following policy allows all the entities to connect to the pod with label of
app=server except the pod with label app=random-pod

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "deny-ingress"
spec:
endpointSelector:
matchLabels:
app: server
ingress:
- fromEntities:
- all
ingressDeny:
- fromEndpoints:
- matchLabels:
app: random-pod

Example 2 - egressDeny

The following CNP blocks connection for pod with label of app=random-pod
towards endpoint with label of app=server

All other egress is allowed.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "deny-egress”
spec:
endpointSelector:
matchLabels:
app: random-pod
egress:
- toEntities:
- all
egressDeny:
- toEndpoints:
- matchlLabels:

app: server

Cilium - Transparent Encryption

Understanding the Challenge

Kubernetes for network traffic.

By default, communication between pods in a Kubernetes cluster happens in
plaintext unless additional security measures are implemented.

plain-text traffic

Worker Node 1 Worker Node 2

Setting the Base

Cilium supports the transparent encryption of Cilium-managed host traffic and
traffic between Cilium-managed endpoints either using |Psec or WireGuard

£73Node

(Pod)

@ Encryption
c%!?n Cilium CNI

Verifying the Results

After transparent encryption is enabled, you can capture the tcpdump traffic to
verify the results.

root@kind-control-plane:/home/cilium# tecpdump -n -i cilium_vxlan esp

tcpdump: verbose output suppressed, use -v[v]... for full protocol decode

listening on cilium_vxlan, link-type EN1@MB (Ethernet), snapshot length 262144 bytes
11:56:14.499534 IP 10.244.1.139 > 10.244.0.107: ESP(spi=0x00000003,seq=0x1), length 108
11:56:14.500089 IP 10.244.1.139 > 10.244.0.107: ESP(spi=0x00000003,seq=0x2), length 108
11:56:14.521524 IP 10.244.0.107 > 10.244.1.139: ESP(spi=0x00000003,seq=0x1), length 204
11:56:14.522048 IP 10.244.0.107 > 10.244.1.139: ESP(spi=0x00000003,seq=0x2), length 204

Security Context - readOnlyRootFilesystem

Setting the Base

readOnlyRootFilesystem mounts the container's root filesystem as read-only.

This can mitigate many common attack vectors by preventing unauthorized
changes to critical files within the container.

apiVersion: vl
kind: Pod
metadata:
name: readonly-pod
spec:
containers:
- name: demo
image: busybox:1.37
command: ["sleep”, "1h"]
securityContext:
readOnlyRootFilesystem: true

Adding Exception

For temporary file storage within your application, an emptyDir volume mounted
to a location like /tmp provides can be a suitable solution

apiVersion: vl
kind: Pod
metadata:
name: readonly-pod-emptydir
spec:
containers:
- name: my-container
image: busybox:1.37
command: ["sleep", "1h"]
securityContext:
readOnlyRootFilesystem: true
volumeMounts:
- name: tmp-storage
mountPath: /tmp
volumes:
- name: tmp-storage
emptyDir: {}

When to Use It

It is ideal for containers where the application does not need to modify the root
filesystem at runtime.

For example, applications that rely on external volumes for persistent or
temporary data storage.

If your application requires writable areas (like /tmp for temporary data), you can
explicitly mount these volumes with write permissions while keeping the rest of
the filesystem read-only.

When Not to Use It

Some applications are designed to write logs, cache data, or manage runtime
configurations on the root filesystem. In such cases, forcing the root filesystem
to be read-only may break functionality.

Overview of AppArmor

Revising DAC

Discretionary access control (DAC) allows restricting access to objects based on
the identity of subjects and/or groups to which they belong.

root@kubeadm:~# 1s -1 /fetc/kubernetes/

total 44

-PW------- 1 root root 5658 Mar 7 17:11 admin.conf

-rW------- 1 root root 5682 Mar 7 17:11 controller-manager.conf
-rW------- 1 root root 1974 Mar 7 17:12 kubelet.conf

drwxrwxr-x 2 root root 4096 Mar 10 04:06

drwxr-xr-x 3 root root 4096 Mar 7 17:11

-PW------- 1 root root 5630 Mar 7 17:11 scheduler.conf
-rW------- 1 root root 5682 Mar 7 17:11 super-admin.conf

Challenges with DAC

DAC allows programs to inherit the full permissions of the user running them. If a
user can access sensitive files, any program they run (including malware) can
access those same files.

Sample Use-Case

You have a binary file that performs some basic operation on server like deleting
old log files to cleanup resources.

Suddenly you have seen that binary file is connecting to internet and sending
network traffic.

Attacker

Mandatory Access Controls

Mandatory Access Control (MAC) is a security model in which access to
resources is strictly regulated by a central authority based on predefined security
policies.

Two important concept: Confined (Restricted) and Unconfined (Not Restricted)

Process Z

Process X

Confined Not Confined

Confined Process

Confined Processes are restricted.
Everything that process intends to do must be listed in a profile.

If that capability is not listed in the profile, the process will not be allowed to run

that.
Allow read from /etc
< > Process X
Allow write to /tmp

Allow restart of nginx

Capabilities Confined Profile

Primary Modes of AppArmor

Modes Description
Enforce Actively enforces the defined AppArmor security profile.
Complain

Violations are logged, but the application runs normally without
restrictions.

Unconfined The application runs without AppArmor restrictions.

AppArmor and Kubernetes

Setting the Base

Kubernetes allows you to apply AppArmor profiles to Pods and containers

securityContext:
appArmorProfile:
type: <profile type>

Profile Types Available

Profile Type

Description

RuntimeDefault

To use the runtime's default profile

LocalHost

Uses a custom security profile stored on the node's filesystem

Unconfined

To run without AppArmor

apiVersion: vl
kind: Pod
metadata:
name: hello-apparmor
spec:
securityContext:
appArmorProfile:

type: Localhost
localhostProfile: k8s-apparmor-example-deny-write
containers:
- name: hello
image: busybox
command: ["sh", "-c", "echo 'Hello AppArmor!' && sleep 1h"]

Open Container Initiative

Let’s Standardize

Importance of Standardization

In an organization, if image standardization is not set, different developers will use different set
of images.

This leads to challenges in troubleshooting, as well as security.

knowledge portal

Open Container Initiative

The Open Container Initiative (OCI) is a Linux Foundation project to design open standards
for containers.

There are two important specifications

Specification Description
Image Specification Defines how to create an OCI Image, which includes an image
manifest, a filesystem (layer) serialization, and an image
configuration.
Runtime Specification defines how to run the OCI image bundle as a container.

knowledge portal

Docker Workflow

XX

Same Docker Ul and commands

28
[Docker Engine] User interacts with the Docker Engine
[containerd Engine communicates with containerd High-Level Container Runtime
-]]
[runc] [runc] [] [] containerd spins up runc or other OCI Low-Level Container Runtime

compliant runtime to run containers

knowledge portal

Container Runtimes

A container runtime is software that executes containers and manages container images on a
node

There are multiple container runtimes available. Some of these include:

Docker
containerd
Cri-o

Podman

knowledge portal

High-Level and Low Level Runtimes

kubelet

A

CRI

Pulling Images from registry.

Unpacks image into containers root fs

Generates OCI runtime spec json describing how to run container
Launches OCI compatible runtime (default runc)

{

|

-

une -3 o Runs the container process

|
[

knowledge portal

Container Runtime Interface

Each container runtime has it own strengths.

K8s uses Container Runtime Interface which is a a plugin interface which enables kubelet to use
a wide variety of container runtimes without the need to recompile.

- =)

[Kubernetes Master } — [| kubelet container runtime }
\ J

knowledge portal

Flexibility for Container Runtimes

OClI OClI

knowledge portal

Container Runtime Interface

CRI

Container Runtime Interface

Each container runtime has it own strengths.

K8s uses Container Runtime Interface which is a plugin interface that enables kubelet to use a
wide variety of container runtimes without the need to recompile.

4 D)
[Kubernetes Master } — 1 -—[container runtime]
J

podn
-

knowledge portal

|'I Docker Engine

[dockerd]

:

(v
[container

knowledge portal

Container Sandbox

Sandboxing

Basic Architecture

Applications that run in traditional Linux containers access system resources in the same way
that regular (non-containerized) applications do: by making system calls directly to the host
kernel.

[Application]

System Calls

Hardware E—

knowledge portal

Use Cases - Bugs

If there are certain bugs at the Kernel level, the application can take advantage of it to achieve
various use-cases like privilege escalation, and others.

[. Host Kernel J

knowledge portal

Seccomp

Kernel features like seccomp filters can provide better isolation between the application and host
kernel, but they require the user to create a predefined whitelist of system calls.

In practice, it’s often difficult to know which system calls will be required by an application

beforehand.

Application
Limited system calls
— o9
X o
Host Kernel \?'f\go\@“

Hardware

knowledge portal

Container Sandbox

Sandboxing is a approach that enforces a level of isolation between the software running on the
machine and the underlying operating system.

In practice, it’s often difficult to know which system calls will be required by an application

beforehand.

knowledge portal

Overview of gVisor

The core of gVisor is a kernel that runs as a normal, unprivileged process that supports most
Linux system calls.

gVisor intercepts all system calls made by the application, and does the necessary work to service
them thus providing a strong isolation boundary.

&
Application e,\\be’
o
System Calls & \{3’6‘ q;\\°°
> O

I
TN
- O 5
—— Limited System Calls </ 3P
- \

Hardware

knowledge portal

Exploring gVisor
It primarily replaces runc (default runtime) which had few serious vulnerabilities

It comes with an OCI runtime named runsc and hence can act as a drop—in replacement to the
runc.

runc

knowledge portal

Exploring dmesg

dmesg (diagnostic message) is a command on most Unix-like operating systems that prints the

message buffer of the kernel.

root@nginx:/#

WNNNNRERRHEOO

0.000000]
.485125]
.886586]
.125605]
.327612]
.395538]
.737309]
.108302]
.290812]
.402811]
.773946]
.250078]

dmesg

Starting gVvisor...

Moving files to filing cabinet...
Feeding the init monster...
Daemonizing children...

Verifying that no non-zero bytes made
Searching for socket adapter...
Synthesizing system calls...

waiting for children...
Adversarially training Redcode AI...
Creating process schedule...
Creating cloned children...

Ready!

gVisor based POD

knowledge portal

root@nginx2:/# dmesg

[0.000000] Linux version 5.4.0-1029-aws (buildd@lcy0l-amd64
04)) #30-Ubuntu SMP Tue Oct 20 10:06:38 uTC 2020 (Ubuntu 5.4.0-
[0.000000] command 1ine: BOOT_IMAGE=/boot/vmlinuz-5.4.0-102

OCOO0OO0OOOOOOOOO

.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]

ole=ttySO nvme_core.io_timeout=4294967295 panic=-1

KERNEL supported cpus:
Intel GenuineIntel
AMD AuthenticAMD
Hygon HygonGenuine
Centaur CentaurHauls

zhaoxin Shanghai
x86/fpu: Supporting XSAVE feature 0x001: 'x87 f1i
x86/fpu: Supporting XSAVE feature 0x002: 'SSE re
x86/fpu: Supporting XSAVE feature 0x004: 'AVX rei

x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]
x86/fpu: Enabled xstate features 0x7, context si:
BIOS-provided physical RAM map:

Default runtime class pod

Challenges

Generally organization makes use of sandboxes like gVisor for the applications that are not
entirely trusted (cloning repo from GitHub and running that application)

It can lead to certain performance degradation.

knowledge portal

RunTimeClass

RuntimeClass is a feature for selecting the container runtime conﬁguration.

You can set a different RuntimeClass between different Pods to provide a balance of
performance versus security.

pod1

default, runc gvisor,runsc

knowledge portal

Vulnerability, Exploit, Payload

Ethical Hacking Terminology

The simple house terminology

knowledge portal

The Answers

Vulnerability :- Hole on the Side of the House
Exploit :- The Robber

Payload :- What Robber does inside the house

knowledge portal

Security Terminology

Vulnerability :- Bad Software Code
Exploit :- Program that exploits code to get inside.

Payload :- Stealing Data, Ransomwares etc.

knowledge portal

Scan Result of Vulnerability Scanners

Internal Scan Configure Audit Trail Launch Export ~

Hosts > 127.001 > Vulnerabilities [EJ

Severity « Piugin Name Plugin Family Count
Ubuntu 12.04 LTS / 14.04 LTS / 16.04 LTS / 16.10 : firefox fegression (USN-3216-2) Ubuntu Local Security Checks 1
Ubuntu 12.04 LTS / 14.04 LTS / 16.04 LTS / 16.10 : icu vulnerabilites (USN-3227-1) Ubuntu Local Security Checks 1
Ubuntu 12.04 LTS / 14.04 LTS / 16.04 LTS / 16.10 - ibxmi2 vulnerabilities (USN-3235-1) Ubuntu Local Security Checks 1
Ubuntu 12.04 LTS / 14.04 LTS / 16.04 LTS : python2.7. python3.2, python3.4, python3.5 vulnerabilities (USN-3134-1) (hitpoxy) Ubuntu Local Security Checks 1

PostgreSQL Default Unpassworded Account Databases 1

Ubuntu 12.04 LTS /14.04 LTS / 1510/ 16.04 LTS : nspr vulnerability (USN-3028-1) Ubuntu Local Security Checks 1

Ubuntu 12.04 LTS /14.04 LTS / 15.10/ 16.04 LTS : thunderbird vulnerabilities (USN-3023-1) Ubuntu Local Security Checks 1

B ubunw 12.04 LTS/ 14.04 LTS / 1510 16.04 LTS : nss vulnerability (USN-3029-1) Ubuntu Local Security Checks 1

Ubuntu 12.04 LTS / 14.04 LTS / 15.10 : pidgin vuinerabdities (USN-3031-1) Ubuntu Local Security Checks 1

knowledge portal

Container Security Scanning

Container Security

Getting Started

Docker Containers can have security vulnerabilities.

If blindly pulled and if containers are running in production, it can result in breach.

latest

View All Tags

There are 20 vulnerable Core/components (Last scanned 4 days ago) Provide Feedback

1. ADD 49,0MB base A .-.

file:1d214d2...e616f23870 layer &
in/
Component Vulnerability Severity
bash 4.3-11+b1 CVE-2016-7543 Critical
GPLv3: Copyleft License CVE-2016-9401

knowledge portal

Overview of Security Scanning in DTR

DTR allows us to perform security scan for the containers.

These scan can perform “On Push” or even manually.

admin / webserver

Info Tags Webhooks Promotions Pruning Mirrors Settings Activity
] Image Os/Arch Image ID Size Signed Last Pushed
— (Compressed)
= 2 12 minutes ago
[ubuntu linux / amd64 9361ce633ff1 43.56 MB by admin
O Vi linux/amdé4 d8233ab899dd 7559k PN
— y admin

Vulnerabilities

5 Critical 31 Major 18
Minor

Clean

View
details

View
details

knowledge portal

Trivy

Let’s Scan with Trivy

Trivy is a open-source based simple and comprehensive vulnerability Scanner for containers

® 2. bash

Detecting npm vulnerabilities. .
Updating pipenv

petecting bundler vulner bilities
Updating cargo Secur

Total: 26 (UNKNOWN: O, LOW: 3, MEDIUM: 16, HIGH: 5, CRITICAL:

+
LIBRARY | VULNERABILITY ID | SEVERIT

curl: NTLM password overflo
eger overflow

Flow leading
Ffer overflow in
e_plain nessage()

curl: Use-
closing "easy" handle in
curl_close()

curl: NTLM type-
out-of -bounds nuffn

d buffer
| over-read in the curl tool
warning formatting

knowledge portal

kube-bench

Security Monitoring

Overview of kube-bench

kube-bench is a Go application that checks whether Kubernetes is deployed securely by running
the checks documented in the CIS Kubernetes Benchmark.

root@ip-172-26-4-221:~# kube-bench

[INFO] 2 worker Node Security Configuration

[INFO] 2.1 Kubelet

[FAIL] 2.1.1 Ensure that the --allow-privileged argument is set to false (Scored)

[PASs] 2.1.2 Ensure that the --anonymous-auth argument is set to false (Scored)

[PASS] 2.1.3 Ensure that the --authorization-mode argument is not set to AlwaysAllow (Scored)
[PASS] 2.1.4 Ensure that the --client-ca-file argument is set as appropriate (Scored)

[FAIL] 2.1.5 Ensure that the --read-only-port argument is set to 0 (Scored)

[PASS] 2.1.6 Ensure that the --streaming-connection-idle-timeout argument is not set to 0 (Scored)
[FAIL] 2.1.7 Ensure that the --protect-kernel-defaults argument is set to true (Scored)
[PASS] 2.1.8 Ensure that the --make-iptables-util-chains argument is set to true (Scored)
[PASS] 2.1.9 Ensure that the --hostname-override argument is not set (Scored)

[FAIL] 2.1.10 Ensure that the --event-qgps argument is_set to 0 (Scored)

knowledge portal

Securing Docker Daemon

Setting the Base

In most organizations, Docker daemon runs with root privileges, which means
any user with access to the daemon can potentially gain elevated privileges on
the host system.

root@docker:~# ps aux | grep docker
root 4000 ©.6 7.8 1914260 77388 ? Ssl ©04:14 9:05 /usr/bin/ d -H unix:///var/run/ .sock
27.0.0.1:2375 --containerd=/run/containerd/containerd.sock

1 - Removing Users from Docker Group

Users in the Docker group effectively have root privileges on the host system, as
they can create containers that mount sensitive host directories.

root@docker:~# cat /etc/group | grep docker
:X:988:test-user

2 - Deny Traffic to Docker Daemon

If the daemon is exposed over TCP (tcp://0.0.0.0:2375 or tcp://0.0.0.0:2376), it
becomes a prime target for remote attacks

root@docker:~# netstat -ntlp
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp (%) © 127.0.0.54:53 0.0.0.0:%* LISTEN 676/systemd-resolve
tcp %] 0 127.0.0.53:53 0.0.0.0:%* LISTEN 676/systemd-resolve
tcp 0 0 127.0.0.1:2375 0.0.0.0:%* LISTEN 4000/dockerd

tcp6 0 0 :::22 sk LISTEN 1/init

Reference Screenshot of Request to Remote Access

root@docker:~#
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 1778 100 1778 0 0 603k --il--1-- --i--:1-- --:--:-- 868k
[
{

"Id": "c86e7d79dfd876152bbd30035ac6bc537a38fabebb3890a96f0cae974bad5854",
"Names": [
"/romantic_mclean”

2 ed

P
Image": "alpine”,
"ImageID": "sha256:adedlela5b3705116faka92bab®74a5e0b0031647d9c315983ccba2ee5428ec8b”,
"Command”: "tail -f /dev/null"”,
“"Created”: 1740975652,
"Ports": [],
“Labels": {},
"State": "running”,
"Status”: "Up 17 minutes”,
"HostConfig": {
"NetworkMode": "bridge"

Dockerfile - Security Best Practices

Setting the Base

A Dockerfile designed with security in mind avoids common security issues like
privileged access, open ports, redundant software, and credential leaks

FROM ubuntu:18.04

USER root

RUN apt-get update

RUN apt-get install -y curl
RUN apt-get install -y wget
RUN apt-get install -y nano
EXPOSE 80

WORKDIR /usr/src/app

COPY app.sh .

RUN chmod -R 777 /usr/src/app/app.sh
CMD ["./app.sh"]

1 - Use Updated Base Image

The original Dockerfile uses ubuntu:18.04, which is outdated.

Switching to a more recent version like ubuntu:24.10 ensures better security,
package support, and optimizations.

FROM ubuntu:18.04 = FROM ubuntu:24.10

2 - Prefer Minimal Image

If the application does not require Ubuntu, a more minimal image like alpine can
further reduce image size.

<« FROM alpine

FROM ubuntu:24.10

3 - Reduce Number of Layers

Instead of multiple RUN statement, combine them into a single RUN command

RUN
RUN
RUN
RUN

apt-get
apt-get
apt-get
apt-get

update

install -y curl
install -y wget
install -y nano

_

RUN apt-get
apt-get
apt-get
apt-get

update && \

install -y curl &R \
install -y wget && \
install -y nano

4 - Avoid Running as Root

The original Dockerfile uses ROOT user. This gives full read, write, and execute
permissions to everyone, which is a security risk.

Instead use other user with limited privilege.

USER root USER appuser

Static Analysis

Let’s Secure

Overview of Static Analysis

Static code analysis is a method of debugging by examining source code before a program is run.

Rules

No run as root user

No Host Volume Mount PODS

No HostNetwork

ImagePullPolicy !=Always

knowledge portal

There are various tools like Checkov that can perform static analysis.

5_23: "Minimize the admission of root ¢

28: "Minimize the admission of containers with the NET_RAW capability"

knowledge portal

Dockerfile is Important

It is als important to go through Dockerfile for potential misconfiguration (security side)

FROM ubntu:latest
RUN apt-get update & & apt-get install nano

USER ROOT
CMD["sleep 3600"]

knowledge portal

Securing Docker Daemon

Setting the Base

In most organizations, Docker daemon runs with root privileges, which means
any user with access to the daemon can potentially gain elevated privileges on
the host system.

root@docker:~# ps aux | grep docker
root 4000 ©.6 7.8 1914260 77388 ? Ssl ©04:14 9:05 /usr/bin/ d -H unix:///var/run/ .sock
27.0.0.1:2375 --containerd=/run/containerd/containerd.sock

1 - Removing Users from Docker Group

Users in the Docker group effectively have root privileges on the host system, as
they can create containers that mount sensitive host directories.

root@docker:~# cat /etc/group | grep docker
:X:988:test-user

2 - Deny Traffic to Docker Daemon

If the daemon is exposed over TCP (tcp://0.0.0.0:2375 or tcp://0.0.0.0:2376), it
becomes a prime target for remote attacks

root@docker:~# netstat -ntlp
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp (%) © 127.0.0.54:53 0.0.0.0:%* LISTEN 676/systemd-resolve
tcp %] 0 127.0.0.53:53 0.0.0.0:%* LISTEN 676/systemd-resolve
tcp 0 0 127.0.0.1:2375 0.0.0.0:%* LISTEN 4000/dockerd

tcp6 0 0 :::22 sk LISTEN 1/init

Reference Screenshot of Request to TCP Port

root@docker:~#
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
160 1778 100 1778 0 0 603k --il--1-- --i--:1-- --:--:-- 868k
[
{

"Id": "c86e7d79dfd876152bbd30035ac6bc537a38fabebb3890a96f0cae974bad5854",
"Names": [
"/romantic_mclean”

2 e

P]
Image": "alpine”,
"ImageID": "sha256:adedlela5b3705116faka92bad®74a5e0b0031647d9c315983ccba2ee5428ec8b”,
"Command": "tail -f /dev/null"”,
”Created“: 1740975652,
“Ports”: [,
“Labels s
"State”: running",
"Status”: "Up 17 minutes”,
"HostConfig": {
"NetworkMode": "bridge"

Dockerfile - Security Best Practices

Setting the Base

A Dockerfile designed with security in mind avoids common security issues like
privileged access, open ports, redundant software, and credential leaks

FROM ubuntu:18.04

USER root

RUN apt-get update

RUN apt-get install -y curl
RUN apt-get install -y wget
RUN apt-get install -y nano
EXPOSE 80

WORKDIR /usr/src/app

COPY app.sh .

RUN chmod -R 777 /usr/src/app/app.sh
CMD ["./app.sh"]

1 - Use Updated Base Image

The original Dockerfile uses ubuntu:18.04, which is outdated.

Switching to a more recent version like ubuntu:24.10 ensures better security,
package support, and optimizations.

FROM ubuntu:18.04 = FROM ubuntu:24.10

2 - Prefer Minimal Image

If the application does not require Ubuntu, a more minimal image like alpine can
further reduce image size.

<« FROM alpine

FROM ubuntu:24.10

3 - Reduce Number of Layers

Instead of multiple RUN statement, combine them into a single RUN command

RUN
RUN
RUN
RUN

apt-get
apt-get
apt-get
apt-get

update

install -y curl
install -y wget
install -y nano

_

RUN apt-get
apt-get
apt-get
apt-get

update && \

install -y curl &R \
install -y wget && \
install -y nano

4 - Avoid Running as Root

The original Dockerfile uses ROOT user. This gives full read, write, and execute
permissions to everyone, which is a security risk.

Instead use other user with limited privilege.

USER root USER appuser

Docker Daemon Configuration

There are

1.
2.

Setting the Base

to configure the Docker daemon:

Use a JSON configuration file (preferred)

Use flags when starting dockerd

root@ubuntu:/etc/docker# cat /[etc/docker/daemon.json

{

"t].S":

true,

"tlsverify": true,

"tlscacert": "/etc/docker/certs/ca.pem”,
"tlscert”: "/etc/docker/certs/server-cert.pem”,
"tlskey": "/etc/docker/certs/server-key.pem",

"hosts":

[“tcp://0.0.0.0:2376", "unix:///var/run/docker.sock"]

root@ubuntu:/etc/docker# dockerd --storage-driver overlay2

[2025-03-05T13:56:03.7350619397]
[2025-03-05T13:56:03.736616384Z]
[2025-03-05T13:56:03.736814871Z]
stemd/resolve/resolv.conf
[2025-03-05T13:56:03.7593558717]
[2025-03-05T13:56:03.7862051367Z]
[2025-03-05T13:56:04.257306179Z]
[2025-03-05T13:56:04.2773486927]
e =overlay2
[2025-03-05T13:56:04.277821374Z]
[2025-03-05T13:56:04.3128980547]
[2025-03-05T13:56:04.320436449Z]
[2025-03-05T13:56:04.3205080487]

=28.

Starting up
OTEL tracing is not configured, using
detected 127.0.0.53 nameserver, assum

[graphdriver] trying configured drive
Loading containers: start.

Loading containers: done.

Docker daemon

0.1

Initializing buildkit

Completed buildkit initialization
Daemon has completed initialization
API listen on /var/run/docker.sock

JSON Configuration File Location

The following table shows the location where the Docker daemon expects to find
the configuration file by default

OS and Configuration Description

Linux, regular setup /etc/docker/daemon.json

Windows C:\ProgramData\docker\config\daemon.json

Protecting Docker Daemon Socket

Setting the Base

If you need Docker to be reachable through HTTP, you can enable TLS (HTTPS)
and allow trusted connections through certificate based authentication

(I
Authentication via Certificates

—— L y

root@ubuntu: /etc/docker#

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 820 100 820 0 ® 36525 @ —=i-=i== mmpesnoe moposmtoe 37272
{
"Platform”: {
"Name"”: "Docker Engine - Community"
b
"Components”: [
{

"Name": "Engine",

"Version": "28.0.1",

"Details": {
"ApiVersion": "1.48",
“Arch": "amde4",
"BuildTime": "2025-02-26T10:41:12.000000000+00:00",
"Experimental”: “"false",
"GitCommit": "bbd@al7",
"GoVersion": "gol.23.6",
"KernelVersion": "6.8.0-51-generic”,
"MinAPIVersion": "1.24",
"0s": "linux"

1

BOM and SBOM

Basics of Bill of Materials

A Bill of Materials (BOM) is like a recipe or blueprint for building a product.

It lists all the components, quantity, materials required to manufacture an item.

TEGRATIONS WILP +
HELP AND TRAMNING COMPARE BOMS

AULITEMs - 9559

EMs. Item Information
ALL BOMS Part Number: 1
YOP LEVEL BOMS Catsteg:

ALL CATALOGS

PPP-420240 TOP-5935%
BCLECTIC Comtru e rcrgron -
Vb arvd with e P

shared w

i Folders

assy-plate00

5y Main-Shell A.. Display Rim

Software Bill of Materials

A Software Bill of Materials (SBOM) is a
make up a software application.

Package Relationships

OpenSSL 1.2.1

NGINX <

PCRE 8.44

zLib 1.2.10

Curl 7.88

Bash 5.2

that

B SPDX Document SBOM-SPDX-77914@af-12b0-410a-831d-a6f9986f7543
@ DESCRIBES 1 Packages

- sha256:28edb1806e63847a8d6177a7c312045e1bd91d5e3c944c8a0012f0b14c830c44

& 7 Relationships

- CONTAINS PACKAGE sha256:7cf63256a31ad4cc44f6defe8elaf95363aee5fa75f30a248d95cae684187c53¢c
- CONTAINS PACKAGE sha256:bf9acace214a6c23630803d90911f1fd7d1ba®6a3083f0a62fd036a6d1d8e274
@& 149 Relationships

- CONTAINS PACKAGE adduser@3.134

- CONTAINS PACKAGE apt@2.6.1

- CONTAINS PACKAGE base-files@12.4+deb12u9

- CONTAINS PACKAGE base-passwd@3.6.1

- CONTAINS PACKAGE bash@5.2.15-2+b7

- CONTAINS PACKAGE bsdutils@1:2.38.1-5+debl2u3

- CONTAINS PACKAGE ca-certificates@20230311

- CONTAINS PACKAGE coreutils@9.1-1

- CONTAINS PACKAGE curl@7.88.1-10+debl2u8

- CONTAINS PACKAGE dash@e.5.12-2

- CONTAINS PACKAGE debconf@1.5.82

- CONTAINS PACKAGE debian-archive-keyring@2023.3+debl2ul

Generating SBOM

Generating a Software Bill of Materials (SBOM)
, its dependencies, and components.

Various tools Trivy, Syft, Bom can generate SBOM.

o

Generate

SBOM

W

SBOM Formats

The two most widely used SBOM formats are:

1. SPDX (Software Package Data Exchange)
2. CycloneDX

SBOM Format

SPDX CycloneDX

Understanding the Formats

Features

SPDX

CycloneDX

Developed By

Linux Foundation

OWASP

Focus Area

License compliance, intellectual property,
security

Security, software supply chain risk
management

Primary Use Case

Used widely in open source compliance
and legal audits

Used mainly for security, vulnerability
management, and risk assessment

Complexity

More complex, detailed metadata about
licenses and compliance

Simplified, security-focused,
lightweight

Overview of Falco

Detection and Prevention

In Kubernetes, features like Network Policies and RBAC are primarily used for
prevention related capabilities.

It is equally that provide visibility into
the environment, allowing us to monitor and understand ongoing activities.

Introduction to Falco

Falco is an open-source that allows users to define a set of
rules that will trigger an alert whenever the conditions are met.

Sample Rules

A shell inside a container

Sensitive file like /etc/shadow is read.

curl / wget command used.

New package installed

Host Based Events Captured

=======Mar 07 07:16:35 k8s falco[134162]: ©7:16:35.714043982: Warning Sensitive file opened for reading by non-trusted progra
m (file=/etc/shadow gparent=sshd ggparent=sshd gggparent=systemd evt type=openat user=root user_uid=0 user_loginuid=0 process
=cat proc_exepath=/usr/bin/cat parent=bash command=cat /etc/shadow terminal=34817 container_id=host container_name=host)

Container Based Events Captured

Mar 07 ©7:28:05 k8s falco[134162]: ©7:28:05.304940082: Notice A shell was spawned in a container with an attached terminal (e
vt_type=execve user=root user_uid=0 user_loginuid=-1 process=bash proc_exepath=/usr/bin/bash parent=containerd-shim command=b
ash terminal=34816 exe flags=EXE_WRITABLE|EXE_LOWER LAYER container id=b3@aaf@2call container_ name=<NA>)

Writing Custom Falco Rules

- rule: shell in_container
desc: notice shell activity within a container
condition: >
evt.type = execve and
evt.dir = < and
(proc.name = bash or

proc.name = ksh)
output: >
shell in a container
(user=%user.name container_id=%container.id container_name=%container.name
shell=%proc.name parent=%proc.pname cmdline=%proc.cmdline)
priority: WARNING

Basic Rule Format

Field Description
rules The name of the rule. It should be unique and descriptive of what the rule detects.
desc A human-readable description of what the rule does, explaining the security threat being
detected.
condition A logical expression that defines when the rule should trigger an alert.
output The alert message that is generated when the rule condition is met
priority The severity level of the rule (e.g., EMERGENCY, ALERT, CRITICAL, ERROR, WARNING

etc) . Higher severity indicates more critical security events.

- rule: Detect curl Execution in Kubernetes Pod
desc: Detects when the curl utility is executed within a Kubernetes pod.

condition: >
spawned process and container and

proc.name = "curl"
output: >

Suspicious process detected (curl) inside a Kubernetes pod.
priority: WARNING

Macros

Macros are essentially predefined rule conditions. They allows you to avoid
repeatedly writing the same complex expressions.

- macro: sensitive files
condition: fd.name in (/tmp/sensitive.txt)

- rule: Access to Sensitive Files
desc: Detect any process attempting to read or write sensitive files
condition: sensitive files

output: "Sensitive file access detected (user=%user.name process=%proc.name file=%fd.name)"
priority: WARNING

Falco Rule for /dev/mem Access

Setting the Base

is a special device file in Linux that provides access to the system's
physical memory.

root@kubeadm:~# ls -1 /dev/mem
Crw-r----- 1 root kmem 1, 1 Mar 7 17:06 /dev/mem

Important to Monitor /dev/mem

Since /dev/mem grants access to critical system memory, unauthorized access
can lead to Privilege Escalation, Kernel Exploits etc.

and should not interact directly with system
memory.

—
app-pod -
—

==

/devimem

Container and /dev/mem Access

Not all Kubernetes pods have access to /dev/imem by default.

unless a pod is privileged or explicitly granted
special permissions.

root@nginx-pod:~# 1s -1 /dev

total ©

lrwxrwxrwx 1 root root 11 Mar 7 17:39 core -> /proc/kcore
lrwxrwxrwx 1 root root 13 Mar 7 17:39 fd -> /proc/self/fd
crw-rw-rw- 1 root root 1, 7 Mar 7 17:39 full

drwxrwxrwt 2 root root 40 Mar 7 17:38 mqueue

crw-rw-rw- 1 root root 1, 3 Mar 7 17:39 null

lrwxrwxrwx 1 root root 8 Mar 7 17:39 ptmx -> pts/ptmx
drwxr-xr-x 2 root root © Mar 7 17:39 pts

crw-rw-rw- 1 root root 1, 8 Mar 7 17:39 random

drwxrwxrwt 2 root root 40 Mar 7 17:38 shm

lrwxrwxrwx 1 root root 15 Mar 7 17:39 stderr -> /proc/self/fd/2
lrwxrwxrwx 1 root root 15 Mar 7 17:39 stdin -> /proc/self/fd/e
lrwxrwxrwx 1 root root 15 Mar 7 17:39 stdout -> /proc/self/fd/1
-rw-rw-rw- 1 root root ® Mar 7 17:39 termination-log
crw-rw-rw- 1 root root 5, @ Mar 7 17:39 tty

crw-rw-rw- 1 root root 1, 9 Mar 7 17:39 urandom

crw-rw-rw- 1 root root 1, 5 Mar 7 17:39 zero

Falco Configuration File

Setting the Base

Falco's configuration file is a containing a collection of key: value or
key: [value list] pairs.

Configuration file is available at /etc/falco.yaml

root@kubeadm:~# 1s -1 /etc/falco

total 196

drwxr-xr-x 2 root root 4096 Mar 7 17:29

-rw-r--r-- 1 root root 58628 Jan 28 09:06 falco.yaml

-rw-r--r-- 1 root root 58628 Mar 7 18:55 .

-rw-r--r-- 1 root root 328 Mar 7 18:46 falco_rules.local.yaml file_output:
1 root root 63723 Jan 1 1970 falco_rules.yaml enabled: false
P

root root 4096 Jan 28 ©9:34 keep_alive: false
: filename: ./events.txt

-rW-r--r--
drwxr-xr-x

Sysdig

Monitoring System calls

Overview of Sysdig

In a normal scenario of troubleshooting and performance monitoring, we make use of the
following tools

Sysdig ofters the functionality of these tools along with a lot more.

strace Discovering system calls
tcpdump Network traffic monitoring
Isof Files are opened by which process. > &) sysdig
netstat Network Connection monitoring
htop Process Monitoring
iftop Network Bandwidth monitoring

Interactive Options

Sysdig Utility comes with a command line option (sysdig) as well as interface UI (csysdig)

Viewing: Processes For: whole machine)
Source: Live System Filter: evt.type!=switch

102296 6 root 9 1G 0 15.22K kube-apiserver --advertise-address=172.31.59.221
471 3 root 18 2G 0 3.39K /usr/bin/kubelet --bootstrap-kubeconfig=/etc/kube
102255 2.50 root 7 793M 100Mm 0 17.89K kube-controller-manager --allocate-node-cidrs=tru
663 1.50 root 27 1G 114m 0 0.00 /usr/bin/dockerd -H fd:// --containerd=/run/conta
1966 1.50 root 14 2G 73M 70Kk 2.98K etcd --advertise-client-urls=https://172.31.59.22
4714 0.50 root 9 730M 38M 0 893.50 /coredns -conf /etc/coredns/Corefile
491 0.50 root 33 1G 49M 0 0.00 /usr/bin/containerd
3550 0.00 root 9 1G 36M 0 0.00 /opt/bin/flanneld --ip-masq --kube-subnet-mgr
123819 0.00 ubuntu il 6M am 0 0.00 /usr/1ib/openssh/sftp-server
1689 0.00 root 10 106M 6M 0 0.00 containerd-shim -namespace moby -workdir /var/1ib
488 0.00 root L 17m 8M 0 0.00 /1ib/systemd/systemd-logind
4368 0.00 root 10 106M 5M 0 0.00 containerd-shim -namespace moby -workdir /var/lib
4353 0.00 root 10 106M 5M 0 0.00 containerd-shim -namespace moby -workdir /var/l1ib
102256 0.00 root 9 729M 46M 0 1.51K kube-scheduler --authentication-kubeconfig=/etc/k
534 0.00 www-data 1 57M 5M 0 0.00 nginx: worker process
3265 0.00 root 10 106M oM 0 0.00 containerd-shim -namespace mob{ -workdir /var/lib
512 0.00 root 1 6M 2M 0 0.00 /sbin/agetty -0 -p -- \u --noclear ttyl Tinux
1641 0.00 root 11 853M 28M 0 0.00 /snap/amazon-ssm-agent/2996/ssm-agent-worker
3123 0.00 root 1l 964K 4K 0 0.00 /pause
458 0.00 root 1 8M 3M 0 0.00 /usr/sbin/cron -f

knowledge portal

Running sysdig

In its simplest form, when you run sysdig, you will see all the system calls that are happening
within the system.

52 07:50:42.829676193
54 07:50:42.829686696
vm_swap=0

55 07:50:42.829687819

=0
56 07:50:42.829690356

<NA> (0) > switch next=1157782 pgft_maj=0 pgft_min=0 vm_size=0 vm_rss=0 vm_swap=0
sysdig (1171310) > switch next=1155766 pgft_maj=0 pgft_min=2183 vm_size=447872 vm_rss=25612

<NA> (1157782) > switch next=1170533(sshd) pgft_maj=0 pgft_min=0 vm_size=0 vm_rss=0 vm_swap
<NA> (1155766) > switch next=1171310(sysdig) pgft_maj=0 pgft_min=0 vm_size=0 vm_rss=0 vm_sw

sshd (1170533) < select res=1
sysdig (1171310) > switch next=1155766 pgft_maj=0 pgft_min=2183 vm_size=447872 vm_rss=25612

57 07:50:42.829696854
58 07:50:42.829697168
vm_swap=0

07:50:42.829699893

1

0

1

0

1

0

0 <NA> (1155766) > switch next=1171310(sysdig) pgft_maj=0 pgft_min=0 vm_size=0 vm_rss=0 vm_sw
60 07:50:42.829702032 1 sshd (1170533)

il

1

1

1

1

il

1

e

> rt_sigprocmask
61 07:50:42.829703224 sshd (1170533) < rt_sigprocmask
62 07:50:42.829704021 1 sshd (1170533) > rt_sigprocmask
63 07:50:42.829704472 sshd (1170533) < rt_sigprocmask
64 07:50:42.829707634 sshd (1170533) > clock_gettime
65 07:50:42.829708525 sshd (1170533) < clock_gettime
sshd (1170533) > read fd=15(<f>/dev/ptmx) size=16384
sshd (1170533) < read res=1201 data=1 07:50:42.736703000 O container:0d65633084bf (-1) > co

68 07:50:42.829710931
69 07:50:42.829714826
ntainer json={"container

knowledge portal

Filters

Since you will get a huge amount of data when monitoring system calls, you can use sysdig with
filters to make the output more fine grained.

root@ip-172-31-59-221:~#
310161 07:55:39.213391058 0 nano (1173625) < execve res=0 exe=nano args=test.txt. tid=1173625(nano) pid=1173625(nan

o) ptid=1173599(bash) cwd= fd1imit=1024 pgft_maj=1 pgft_min=24 vm_size=652 vm_rss=4 vm_swap=0 comm=nano cgroups=cpu
set=/.cpu=/user.slice.cpuacct=/user.slice.io=/user.slice.memory=/user.slic... env=SHELL=/bin/bash.SUD0O_GID=1000.SUD
0_COMMAND= /usr/b1n/su SUDO_USER=ubuntu.PWD=/... tty=34822 pgid=1173625(nano) loginuid=1000

310162 07:55:39.213423440 0 nano (1173625) > brk addr=0

310163 07:55:39.213424690 0 nano (1173625) < brk res=563F7341E000 vm_size=652 vm_rss=4 vm_swap=0
310164 07:55:39.213434121 0 nano (1173625) > arch_prctl

310165 07:55:39.213434779 0 nano (1173625) < arch_prctl

310166 07:55:39.213459275 0 nano (1173625) > access mode=4(R_OK)

310167 07:55:39.213464446 0 nano (1173625) < access res=-2(ENOENT) name=/etc/ld.so.preload
310168 07:55:39.213469242 0 nano (1173625) > openat

310169 07:55:39.213476122 0 nano (1173625) > fstat fd=3

310170 07:55:39.213477566 0 nano (1173625) < fstat res=0

knowledge portal

Sysdig Chisels
Sysdig’s chisels are little scripts that analyze the sysdig event stream to perform useful actions

root@ip-172-31-59-221:~#
Category: Application

httplog HTTP requests Tlog
httptop Top HTTP requests
memcachelog memcached requests Tog

Category: CPU Usage
spectrogram Visualize 0S latency in real time.
subsecoffset Visualize subsecond offset execution time.
topcontainers_cpu

Top containers by CPU usage
topprocs_cpu Top processes by CPU usage

Category: Errors
topcontainers_error)

) Top containers by number of errors
topfiles_errors Top files by number of errors
topprocs_errors top processes by number of errors

knowledge portal

Audit Logging

Designing Right Logging Rules

Revising Auditing

Auditing provides a security-relevant, chronological set of records documenting the sequence of
actions in a cluster.

> "api " "au 1' .k8s.i0/v1",
what happene el Sletaaat
° . "388ca4e1 c368 45b4-aca9-652e32baf8el"”
"sta eque st ved"
"requestURI": /ap1/vl/namespaces/defau]t/secrets Timit=500"

when did it happen? L

who initiated it?] z;zs:i msters”,
berestee
on what did it happen? L :

4 Agent": "kubect1/v1.19.0 (1linux/amd64) kubernetes/e199641",
obJectRef {

from where was it initiated? =

"apiversion": "v1"

stRe: edTim 2020-12-03716:55:10.3577892"

to Where Was it gOing? 3 "itggeﬁmestamp 2020 12 03T1(25 55:10.357789z"

knowledge portal

Audit Policy Levels

Audit policy defines rules about what events should be recorded and what data they should

include.
Audit Levels Description
None don't log events that match this rule.
Metadata Log request metadata (requesting user, timestamp, resource, verb, etc.)
but not request or response body.
Request Log event metadata and request body but not response body.
RequestResponse Log event metadata, request and response bodies.

knowledge portal

Stages

The kube—apiserver processes request in stages and each stage generates an audit event.

Stage Description

RequestReceived The stage for events generated as soon as the audit handler receives the
request, and before it is delegated down the handler chain.

ResponseStarted Once the response headers are sent, but before the response body is sent. This
stage is only generated for long-running requests (e.g. watch).

ResponseComplete The response body has been completed and no more bytes will be sent.

Panic Events generated when a panic occurred.

knowledge portal

Important Pointers for Exams

Setting the Base

The 'Important Pointers for Exams' video is not a substitute for the full course.

We highly recommend completing all the videos that are part of the course.

Keep Close Look on External Documentation

The specific external documentation permitted in Linux Foundation exams
provides insight into the key topics that might be assessed.

o Kubernetes Documentation:

= https://kubernetes.io/blog/
This includes all available language translations (e.g. http
o Tools:
= Falco documentation htty
= Bom documentation htip
= etcd documentation ht

This includes all available language translations (e.g. https:/fa

o NGINX Ingress Controller

= Documentation htip

o Cilium:

= Documentation ht;

CIS Benchmarks

It is important to know about (Control
Plane + Worker Node) based on various CIS Benchmark related configuration.

Be very familiar with kubeadm structure and troubleshooting pointers.

Set AuthorizationMode for API Server to RBAC,WebHook

Disable Anonymous Authentication in Kubelet

Disable --auto-tls in etcd

ImagePolicyWebHook

Know the end to end steps to create and enable ImagePolicyWebhook.

Step 1: Create a Configuration File.
Step 2: Create a KubeConfig file.
Step 3: Mount Volumes

Step 4: Enable Admission Controller.

ConfigFile: /path/to/kubeconfig/for/backend

/TTL: 50

koff: 500

Know about the parameter in the configuration file.

Auditing

You should be able to enable Auditing based on the requirements.

Field Description
--audit-log-path Specifies the file path where the audit log is written.
--audit-log-maxage Defines the maximum number of days to retain old audit log files before
deletion.
--audit-log-maxbackup Sets the maximum number of old audit log files to retain.
--audit-log-maxsize Specifies the maximum size (in megabytes) of the audit log file before it
gets rotated.

Example Question - Auditing

Logs should be stored at /var/log/demo-audit.logs
Logs should be retained for the next 30 days.
Maximum size before rotation should be 500 MB.

Maximum number of 10 audit log files should be made available.

Audit Policy

Be familiar setting the Audit Policy based on requirements.

apiVersion: audit.k8s.io/v1l
kind: Policy
omitStages:
- "RequestReceived"
rules:
- level: None
resources:
- group: ""
resources: ["secrets"]
namespaces: ["kube-system"]
- level: None
users: ["system:kube-controller-manager"]
resources:
- group: ""
resources: ["secrets"]

Docker Security

You need to be aware of Docker Daemon Security + Dockerfile security best
practices.

Analyze the Dockerfile and fix 5 security issues.
Disable Docker Daemon to listen on 2375
Make Docker Daemon Secure

Remove user from docker group.

ol

Static Analysis on Kubernetes Manifest

You should be able to read a given Kubernetes manifest file and fix any security
related issues.

metadata:
name: insecure-deployment
labels:
app: insecure-app
spec:
replicas: 2
selector:
matchLabels:
app: insecure-app
template:
metadata:
labels:

app: insecure-app

spec:
containers:

- name: insecure-container
image: nginx:latest
imagePullPolicy: Always
ports:

- containerPort: 86
env:
- name: DB_PASSWORD
value: "supersecretpassword"”
securityContext:
privileged: true
allowPrivilegeEscalation: true
runAsUser: ©
capabilities:
add:
- SYS_ADMIN

Network Policies + Cilium Network Policies

Be comfortable writing Network Policies + Cilium Network Policy.

For Cilium Network Policy:
- Be aware of ingressDeny and egressDeny block.

- Be aware of the Entities in Cilium Network Policies.

Pod Security Standards

You need to have clear understanding of pod security standards, including how
to implement and adjust PSS configurations for pods and deployments

Policies Description

Privileged Unrestricted policy, providing the widest possible level of permissions.
Allows privilege escalations

Baseline Minimally restrictive policy which prevents known privilege escalations.

Restricted Heavily restricted policy, following current Pod hardening best practices.

Security Context

Be familiar with Security Context.

Privileged Pods, Capabilities, readOnlyRootFilesystem (immutability)

apiVersion: vl apiVersion: vi1
. kind: Pod i ion:
kind: Pod a?1Ver51on vl
metadata: kind: Pod
metadata: name: better-pod metadata:
name: privileged-pod spec: name: capabilities-demo
spec: securityContext: SPECs
containers:
containers: Punisgser‘..ligge - name: sec-ctx-4
= image: nginx r‘in.s e image: gcr.io/google-samples/hello-app:2.0
containers: .
5 G securityContext:
name: privileged - name: better-container capabilities:
securityContext: image: busybox add: ["NET_ADMIN", "SYS_TIME"]

privileged: true command: ["sleep", "36000"]

Kubernetes Secrets

Know the basics of creating Secrets and mounting them to Pods.
Be familiar with various type of secrets
1. Opaque Secrets.

2. TLS Secrets

3. Docker config Secrets

BOM and SBOM

You should know on how to create SBOM using tool based on
requirements.

Example: Identify Image that has xyz 1.3.2 package and create SBOM for it.

@ SPDX Document SBOM-SPDX-779140af-12b@-410a-831d-a6f9986f7543
@ DESCRIBES 1 Packages

I sha256:28edb1806e63847a8d6f77a7c312045e1bd91d5e3c944c8a0012f0b14c830c44
& 7 Relationships
I CONTAINS PACKAGE sha256:7cf63256a3ladcc44f6defe8elaf95363ace5Ta75130a248d95cae684187c53¢c
I CONTAINS PACKAGE sha256:bf9acace214a6c23630803d90911f1fd7d1bae6a3083f0a62fd036a6d1d8e274
& 149 Relationships
CONTAINS PACKAGE adduser@3.134
CONTAINS PACKAGE apt@2.6.1
CONTAINS PACKAGE base-files@12.4+deb12u9
CONTAINS PACKAGE base-passwd@3.6.1
CONTAINS PACKAGE bash@5.2.15-2+b7
CONTAINS PACKAGE bsdutils@l:2.38.1-5+deb12u3
CONTAINS PACKAGE ca-certificates@20230311
CONTAINS PACKAGE coreutils@9.1-1
CONTAINS PACKAGE curl@7.88.1-10+deb12u8
CONTAINS PACKAGE dash@e.5.12-2
CONTAINS PACKAGE debconf@l.5.82
CONTAINS PACKAGE debian-archive-keyring@2023.3+debl2ul

Kubernetes Cluster Upgrade

Learn to upgrade both control plane and worker nodes using kubeadm

Don’t mix the steps. The steps for upgrading the kubeadm worker node are
different from control plane node.

Upgrade Control Upgrade Worker

Plane Node Node

Ingress with TLS

Be familiar with the steps required to set up Ingress with TLS.

Be familiar with annotation for HTTP to HTTPS

root@kubeadm:~# kubectl describe ingress tls-ingress

Name : tls-ingress
Labels: <none> networking.k8s.io/v1
Namespace: default Ingress
Address:
Ingress Class: nginx
Default backend: <default>
TLS:
tls-cert terminates demo.kplabs.in
Rules: demo-ingress
Host Path Backends default

demo.kplabs.in
/ example-service:80 (192.168.45.195:80)

Service Account + Projected Volumes

Know how to create service accounts with auto mounting as disabled.

Be familiar with mounting volume sources like SA using Projected Volumes.

apiVersion: vl
kind: ServiceAccount
metadata:

name: test-sa

automountServiceAccountToken:

containers:
- name: container-test
image: busybox:1.37
command: ["sleep”, "3600"]
volumeMounts:
- name: token-vol
mountPath: "/service-account”
readOnly: true
volumes:
- name: token-vol
projected:
false sources:
- serviceAccountToken:
audience: api
expirationSeconds: 3600

path: token

Falco (Keep it for Last)

Be prepared to develop a Falco rule according to a given specification.

If you encounter issues with Falco log generation, verify that syslog is enabled
with debug priority. Alternatively, run Falco directly from the command line,
bypassing systemd.

- rule: Detect curl Execution in Kubernetes Pod
desc: Detects when the curl utility is executed within a Kubernetes pod.
condition: >
spawned process and container and
proc.name = "curl"
output: >
Suspicious process detected (curl) inside a Kubernetes pod.
priority: WARNING

Be Familiar with Deployment Manifest

Exams love Deployment manifests more then Pod manifests.

Join us in our Adventure

. kplabs.in/chat

I n kplabs.in/linkedin

Be Awesome

