Devops

é—‘b Shac

Projects
Kubernates

5 Projects with Implimentation steps

Prepared by
DevOps Shack




((- DeVO S www.devopsshack.com
. 4 ShQC O office@devopsshack.com

Click here for DevSecOps & Cloud DevOps Course

DevOps Shack
5 Kubernetes Projects with Implementation

Table of contents

1. KubeGuard — A security-focused Kubernetes project for monitoring and
enforcing policies.

2. AutoScalerX — A Kubernetes auto-scaling solution with advanced
resource management.

3. KubeFlowOps — A Kubernetes-based workflow automation and CI/CD
tool.

4. ServiceMeshPro — A lightweight service mesh for Kubernetes
microservices.

5. HelmWizard — A smart Helm chart manager for Kubernetes
deployments.


http://www.devopsshack.com/

s

Devo S www.devopsshack.com
Shoc O office@devopsshack.com

Introduction

Empowering Kubernetes with Cutting-Edge Tools for Security, Scalability, and
Efficiency

In today’s cloud-native ecosystem, Kubernetes stands as the cornerstone for
deploying, managing, and scaling containerized applications. As the demands
for more security, automation, and resource optimization grow, a suite of
powerful tools has emerged to cater to these needs. These innovative
solutions, designed specifically for Kubernetes environments, provide
organizations with the ability to streamline operations, enhance security, and
ensure smooth deployment and scaling processes. Below are some of the most
exciting projects shaping the Kubernetes landscape:

o KubeGuard — Security is paramount in Kubernetes, especially as
organizations scale their operations. KubeGuard addresses this by
focusing on the continuous monitoring and enforcement of security
policies across your Kubernetes clusters. With real-time threat detection,
compliance checks, and automated policy enforcement, KubeGuard
ensures that your Kubernetes environment is both secure and compliant
with best practices, protecting against vulnerabilities, misconfigurations,
and security breaches.

» AutoScalerX — As workloads and traffic fluctuate, AutoScalerX provides
an advanced solution for Kubernetes auto-scaling, offering dynamic
resource allocation based on real-time metrics. This tool improves
efficiency by intelligently adjusting resource usage to meet the needs of
running applications. Whether it’s managing CPU, memory, or even
custom metrics, AutoScalerX ensures that your Kubernetes clusters run
efficiently while keeping costs in check, providing your applications with
the performance they need without overprovisioning.

« KubeFlowOps — CI/CD is an essential part of modern DevOps practices,
and KubeFlowOps brings that efficiency and automation to Kubernetes.
This workflow automation tool is specifically built to simplify and
accelerate continuous integration and continuous deployment pipelines
in Kubernetes environments. By automating everything from build and
test to deployment and scaling, KubeFlowOps helps teams deliver



(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

software updates faster, more reliably, and with greater collaboration,
enabling organizations to stay agile and responsive in a competitive
market.

» ServiceMeshPro — Microservices architectures often introduce
complexity in communication, observability, and security.
ServiceMeshPro is a lightweight yet powerful service mesh solution for
Kubernetes, designed to help you manage microservices traffic with
ease. It provides enhanced security through mTLS encryption, detailed
monitoring and observability, and fine-grained traffic management, all
while ensuring minimal resource overhead. This tool simplifies the
process of securing, monitoring, and routing traffic between
microservices, enabling organizations to scale their applications
seamlessly while maintaining full control over inter-service
communication.

o HelmWizard — Helm has become the standard for managing Kubernetes
applications, and HelmWizard takes it a step further by making Helm
chart management smarter and more intuitive. Whether you're
deploying a new application or updating an existing one, HelmWizard
automates the complexities of managing Helm charts by following best
practices and providing intelligent recommendations. This tool enhances
productivity by reducing human error, making Helm deployments faster
and more reliable for developers and DevOps teams alike.

Together, these tools form a comprehensive, integrated suite that addresses
the critical aspects of security, scalability, workflow automation, service
management, and deployment in Kubernetes. With the combination of
KubeGuard, AutoScalerX, KubeFlowOps, ServiceMeshPro, and HelmWizard,
organizations can achieve better governance, faster deployment cycles, and
optimized resource management while ensuring that their Kubernetes
environments remain secure, scalable, and efficient.

In a rapidly evolving cloud-native landscape, leveraging these tools will help
your teams stay ahead of the curve, enhancing operational efficiency, security,
and agility across the entire Kubernetes infrastructure.



s

Devops
)Shac

www.devopsshack.com
O office@devopsshack.com

Project 1: KubeGuard — A Kubernetes Security & Policy

Enforcement Tool

This guide will cover:

Introduction & Purpose
Architecture & Components
Installation & Setup

Policy Enforcement with OPA & Kyverno
Threat Detection with Falco
Vulnerability Scanning with Trivy
Monitoring & Logging

Advanced Security Practices
Real-World Use Cases
Troubleshooting & Best Practices

KubeGuard: A Complete Kubernetes Security & Policy Enforcement Guide

1. Introduction

As Kubernetes adoption grows, securing clusters becomes critical. KubeGuard

is designed to:

« Prevent misconfigurations that expose clusters to security risks

» Enforce security policies for deployments, RBAC, and networking

o Detect real-time threats using Falco

« Scan container images for vulnerabilities before deployment

Why Use KubeGuard?
« Automated security enforcement

o Lightweight & scalable

o Compatible with major cloud providers

« Works with existing CI/CD pipelines

2. KubeGuard Architecture



(‘(- Devo S www.devopsshack.com
¢ 4 Shoc O office@devopsshack.com

KubeGuard consists c;f four main components:

@olicy Enforcement (OPA & Kyverno)
« OPA (Open Policy Agent): Enforces security rules across Kubernetes.
» Kyverno: A Kubernetes-native policy engine for pod security.

@ Threat Detection (Falco)

« Falco: Monitors container behavior and detects anomalies (e.g.,
unauthorized exec commands).

@nage Scanning (Trivy)

o Trivy: Scans container images for vulnerabilities before deployment.
@/Ionitoring & Logging (Prometheus & ELK Stack)

o Prometheus: Collects security metrics.

« ELK Stack (Elasticsearch, Logstash, Kibana): Stores security logs for
analysis.

3. Setting Up KubeGuard in Kubernetes

Step 1: Install Open Policy Agent (OPA)

OPA enforces security policies across your cluster. Install OPA Gatekeeper:
sh

CopyEdit

kubect!l apply -f https://raw.githubusercontent.com/open-policy-
agent/gatekeeper/master/deploy/gatekeeper.yaml

Verify the installation:
kubectl get pods -n gatekeeper-system
Step 2: Deploy Kyverno

Kyverno is another policy engine built specifically for Kubernetes. Install it via
Helm:

helm repo add kyverno https://kyverno.github.io/kyverno/



((\ DeVOES www.devopsshack.com
- ) ShOC office@devopsshack.com

helm install kyverno kyverno/kyverno -n kyverno --create-namespace

4. Enforcing Security Policies with OPA & Kyverno
Example 1: Prevent Containers from Running as Root
OPA Policy (Constraint Template):
apiVersion: templates.gatekeeper.sh/vlbetal
kind: ConstraintTemplate
metadata:
name: k8spspprivileged
spec:
crd:
spec:
names:
kind: K8 PSPPrivilegedContainer
targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8spspprivileged
violation[{"msg": msg}] {
input.review.object.spec.securityContext.runAsUser ==
msg := "Running as root is not allowed!"
}
Apply the policy:

kubectl apply -f policy.yaml

5. Real-Time Threat Detection with Falco



DeVO S www.devopsshack.com
. _) ShQC office@devopsshack.com

Install Falco for runtime security monitoring:
helm repo add falcosecurity https://falcosecurity.github.io/charts
helm install falco falcosecurity/falco
Detect Unauthorized Exec Commands in Containers
Modify Falco’s rule file (/etc/falco/falco_rules.yaml):
- rule: Detect Unauthorized Exec
desc: "Detect exec command in container"
condition: evt.type = execve and container.id != host

output: "Unauthorized exec detected (command=%proc.cmdline
container=%container.id)"

priority: CRITICAL
Restart Falco:

systemctl restart falco

6. Container Image Scanning with Trivy
Install Trivy:

brew install aquasecurity/trivy/trivy
Scan an image:

trivy image nginx:latest

Deploy Trivy in Kubernetes:

kubectl apply -f
https://raw.githubusercontent.com/aquasecurity/trivy/main/contrib/kubernet
es/trivy.yaml|

7. Centralized Monitoring & Logging

Step 1: Install Prometheus



DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

helm install prometheus prometheus-community/prometheus
Step 2: Install Elasticsearch & Kibana for Security Logs

helm repo add elastic https://helm.elastic.co

helm install elasticsearch elastic/elasticsearch

helm install kibana elastic/kibana

8. Advanced Security Configurations
RBAC Hardening
Restrict cluster access with Role-Based Access Control (RBAC). Example policy:
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

namespace: default

name: restricted-user
rules:
- apiGroups: [""]

resources: ["pods"]

verbs: ["get", "list"]
Apply RBAC settings:

kubectl apply -f rbac.yaml

9. Real-World Use Cases

Preventing Misconfigured Deployments

KubeGuard stops deployments missing security settings (e.g., no resource
limits, no network policies).



(‘(- Devo S www.devopsshack.com
. Shoc O office@devopsshack.com

Blocking Vulnerable Container Images

Trivy scans images before they’re deployed, ensuring compliance with security
policies.

Detecting Unauthorized Access

Falco detects when a user runs kubectl exec inside a container and triggers
alerts.

10. Troubleshooting & Best Practices
@ebugging Policy Enforcement Issues
Check logs if policies aren’t enforced:

sh

CopyEdit

kubectl logs -n gatekeeper-system -| gatekeeper.sh/system
@westigating Falco Alerts

If Falco detects an issue, describe the event:
sh

CopyEdit

kubect! get events -A | grep Falco

@est Practices for Kubernetes Security

Use role-based access control (RBAC)

Always define resource limits on pods
Regularly scan container images

Enable Kubernetes audit logging

Implement network policies to restrict traffic

Final Thoughts

KubeGuard provides a powerful, automated way to secure Kubernetes
clusters. By integrating OPA, Kyverno, Falco, and Trivy, you can:

10



(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

Prevent misconfigurations

Detect runtime security threats
Scan images before deployment
Centralize monitoring & logging

This setup enhances security and compliance, making Kubernetes resilient
against attacks.

Project 2: AutoScalerX — An Advanced Kubernetes
Auto-Scaling Solution

11



((- DeVO S www.devopsshack.com
¢ j Shoc O office@devopsshack.com

This guide will cover:

Introduction & Purpose

Architecture & Components

Installation & Setup

Horizontal & Vertical Pod Autoscaling
Cluster Autoscaler for Node Management
KEDA for Event-Driven Scaling

Real-World Use Cases

Troubleshooting & Best Practices

AutoScalerX: A Complete Kubernetes Auto-Scaling Guide
1. Introduction

Managing workloads in Kubernetes efficiently requires automatic scaling.
AutoScalerX is designed to:

» Optimize resource usage by scaling workloads based on CPU, memory,
and custom metrics

» Improve cost efficiency by automatically adjusting the number of pods
or nodes

« Ensure high availability by preventing resource exhaustion

o Handle event-driven workloads with on-demand scaling

2. AutoScalerX Architecture
AutoScalerX consists of three key components:
@Iorizontal Pod Autoscaler (HPA)
o Adjusts the number of pods based on CPU, memory, or custom metrics.
@ertical Pod Autoscaler (VPA)
« Adjusts CPU and memory requests/limits dynamically for each pod.

@Iuster Autoscaler

o Adds/removes nodes in the cluster based on workload demand.

12



DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

Bonus: KEDA for Event-Driven Scaling

« Scales pods based on external events (e.g., Kafka messages, RabbitMQ,
Prometheus alerts).

3. Setting Up AutoScalerX in Kubernetes
Step 1: Enable Metrics Server (Required for HPA & VPA)
The Kubernetes metrics server provides real-time resource utilization. Install it:

kubectl apply -f https://github.com/kubernetes-sigs/metrics-
server/releases/latest/download/components.yaml

Verify it's running:

kubectl get apiservices | grep metrics

4. Horizontal Pod Autoscaler (HPA)
Step 1: Deploy a Sample Application
Create a simple Nginx deployment:
apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:

labels:

13



€ DeVOES www.devopsshack.com
- J ShQC office@devopsshack.com

app: nginx
spec:
containers:
- name: nginx
image: nginx
resources:
requests:
cpu: "100m"
limits:
cpu: "500m"
Apply the deployment:
kubectl apply -f nginx-deployment.yaml|
Step 2: Create an HPA Policy
The following HPA scales between 1 to 10 pods based on CPU usage:
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: nginx-hpa
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: nginx
minReplicas: 1
maxReplicas: 10

metrics:

14



DeVO S www.devopsshack.com
. _) ShQC office@devopsshack.com

- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 50
Apply it:
kubectl apply -f hpa.yaml
Step 3: Simulate Load & Test Scaling
Generate high CPU usage to trigger scaling:

kubectl run load-generator --image=busybox -- sh -c "while true; do wget -q -O-
http://nginx; done"

Check if pods are scaling:

kubectl get hpa

5. Vertical Pod Autoscaler (VPA)
VPA automatically adjusts resource requests and limits for each pod.
Step 1: Install VPA

kubectl apply -f
https://github.com/kubernetes/autoscaler/releases/latest/download/vertical-
pod-autoscaler.yaml

Step 2: Define a VPA Policy
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:

name: nginx-vpa

spec:

15



DeVO S www.devopsshack.com
. _) ShOC office@devopsshack.com

targetRef:
apiVersion: "apps/v1"
kind: Deployment
name: nginx
updatePolicy:
updateMode: "Auto"
Apply it:
kubectl apply -f vpa.yaml
Step 3: Check VPA Recommendations

kubectl describe vpa nginx-vpa

6. Cluster Autoscaler (Scaling Nodes Automatically)

The Cluster Autoscaler adds/removes worker nodes dynamically.
Step 1: Enable Cluster Autoscaler

For AWS (EKS):

eksctl utils associate-iam-oidc-provider --region us-east-1 --cluster my-cluster --
approve

eksctl create iamserviceaccount --name cluster-autoscaler --namespace kube-
system --cluster my-cluster --attach-policy-arn
arn:aws:iam::aws:policy/AutoScalingFullAccess --approve

For GCP (GKE):

gcloud container clusters update my-cluster --enable-autoscaling --min-nodes 1
--max-nodes 5

For Azure (AKS):

az aks update --resource-group myResourceGroup --name myAKSCluster --
enable-cluster-autoscaler --min-count 1 --max-count 5

Step 2: Deploy Cluster Autoscaler

16



DeVO S www.devopsshack.com
. _) ShQC office@devopsshack.com

kubectl apply -f
https://raw.githubusercontent.com/kubernetes/autoscaler/master/cluster-
autoscaler/cloudprovider.yaml

Step 3: Verify Scaling
kubectl get nodes

kubectl logs -f -n kube-system deployment/cluster-autoscaler

7. Event-Driven Scaling with KEDA

KEDA (Kubernetes Event-Driven Autoscaler) scales workloads based on
external triggers like Kafka, RabbitMQ, Prometheus, and AWS SQS.

Step 1: Install KEDA
helm repo add kedacore https://kedacore.github.io/charts
helm install keda kedacore/keda
Step 2: Create a ScaledObject for RabbitMQ
apiVersion: keda.sh/vlalphal
kind: ScaledObject
metadata:
name: rabbitmg-scaler
spec:
scaleTargetRef:
name: worker-deployment
minReplicaCount: 1
maxReplicaCount: 10
triggers:
- type: rabbitmg
metadata:

queueName: my-queue

17



((- DeVO S www.devopsshack.com
¢ J Shoc O office@devopsshack.com

host: "amqp://user:pasmsword@rabbitmq-service:5672/
Apply it:
kubectl apply -f keda.yaml
Step 3: Verify Scaling

kubectl get scaledobjects

8. Troubleshooting & Best Practices
@ebugging HPA Issues

If HPA isn't scaling, check metrics:
kubectl get hpa nginx-hpa

kubectl top pods

@ebugging VPA Issues

kubectl describe vpa nginx-vpa
@ebugging Cluster Autoscaler

kubectl logs -n kube-system deployment/cluster-autoscaler

Final Thoughts

AutoScalerX provides efficient Kubernetes scaling by combining:
HPA (scaling pods based on CPU/memory)

VPA (adjusting pod resource requests dynamically)

Cluster Autoscaler (adding/removing nodes)

KEDA (scaling based on external events)

This setup ensures cost savings, high availability, and optimal resource usage.

ChatGPT

Project 3: KubeMesh — A Service Mesh Solution for
Kubernetes

18



((- DeVO S www.devopsshack.com
¢ j Shoc O office@devopsshack.com

This guide will cover:

Introduction & Purpose

Architecture & Components

Installation & Setup

Traffic Management & Load Balancing

Security (mTLS, Authorization, and Authentication)
Observability & Monitoring

Real-World Use Cases

Troubleshooting & Best Practices

KubeMesh: A Complete Kubernetes Service Mesh Guide
1. Introduction

As microservices architecture grows, service-to-service communication in
Kubernetes becomes complex. KubeMesh is a service mesh solution that:

« Improves service-to-service communication with advanced traffic
management

« Provides built-in security (mTLS, role-based access, authentication)

« Enhances observability with tracing, logging, and monitoring

« Ensures reliability through retries, failovers, and circuit breaking
Why Use a Service Mesh?

» Zero-trust security: Enforces authentication and encryption for every
request

« Fine-grained traffic control: A/B testing, canary deployments, traffic
shifting

« Better observability: Distributed tracing, monitoring, and logging

« Resilient communication: Automatic retries, timeouts, and circuit
breakers

2. KubeMesh Architecture
KubeMesh consists of four main components:

19



((- DeVO S www.devopsshack.com
¢ J Shoc O office@devopsshack.com

@ata Plane (Envoy Proxym)

« Sidecar proxies deployed with every service

» Intercepts and manages service-to-service traffic
@ontrol Plane (Istio or Linkerd)

« Manages routing, policies, and security

o Communicates with all sidecars and applies rules
@ecurity (mTLS, RBAC, and JWT Authentication)

« Ensures end-to-end encryption for all communication

o Implements fine-grained access control
@bservability (Jaeger, Prometheus, Grafana)

o Provides real-time monitoring

« Enables distributed tracing for debugging

3. Setting Up KubeMesh in Kubernetes
Step 1: Install Istio Service Mesh
Download and install Istio:

curl -L https://istio.io/downloadistio | sh -
cd istio-*

export PATH=SPWD/bin:SPATH

Deploy Istio with a demo profile:

istioctl install --set profile=demo -y

Verify installation:

kubectl get pods -n istio-system

Step 2: Enable Sidecar Injection

Label the namespace for auto-injection of Envoy sidecars:

kubectl label namespace default istio-injection=enabled

20



DeVO S www.devopsshack.com
. _) ShQC office@devopsshack.com

4. Traffic Management & Load Balancing
Step 1: Deploy a Sample Application
Deploy an example Bookstore app with multiple versions:
apiVersion: apps/vl
kind: Deployment
metadata:
name: bookstore-v1
spec:
replicas: 2
selector:
matchLabels:
app: bookstore
version: vl
template:
metadata:
labels:
app: bookstore
version: vl
spec:
containers:
- name: bookstore
image: bookstore:vl
Apply it:
kubectl apply -f bookstore-vl.yaml

Step 2: Create a Virtual Service for Traffic Routing

21



DeVO S www.devopsshack.com
. _) ShQC office@devopsshack.com

apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
name: bookstore
spec:
hosts:
- bookstore
http:
- route:
- destination:
host: bookstore
subset: v1
weight: 80
- destination:
host: bookstore
subset: v2
weight: 20
Apply it:
kubectl apply -f virtual-service.yaml

This routes 80% of traffic to vl and 20% to v2 (ideal for canary deployments).

5. Security (mTLS, Authentication, and Authorization)
Step 1: Enforce Mutual TLS (mTLS)

apiVersion: security.istio.io/vlbetal

kind: PeerAuthentication

metadata:

22



DeVO S www.devopsshack.com
. _) ShQC office@devopsshack.com

name: default
spec:
mtls:
mode: STRICT
Apply it:
kubectl apply -f mtls.yaml
Step 2: Enforce JWT Authentication
apiVersion: security.istio.io/vlbetal
kind: RequestAuthentication
metadata:
name: jwt-auth
spec:
selector:
matchLabels:
app: bookstore
jwtRules:
- issuer: "https://secure-auth.example.com"
jwksUri: "https://secure-auth.example.com/.well-known/jwks.json"
Apply it:
kubectl apply -f jwt-auth.yaml

This enforces JWT authentication on the Bookstore app.

6. Observability & Monitoring
Step 1: Install Prometheus for Metrics Collection
kubectl apply -f istio-telemetry.yaml|

Step 2: Install Jaeger for Distributed Tracing

23



DeVO S www.devopsshack.com
“ / ShQC office@devopsshack.com

kubectl apply -f https://github.com/jaegertracing/jaeger-
kubernetes/releases/download/v1.27.0/all-in-one-template.yaml

Step 3: Install Kiali for Service Mesh Visualization

kubectl apply -f https://raw.githubusercontent.com/kiali/kiali-
operator/master/deploy/kiali.yaml

Access Kiali Dashboard:

kubect| port-forward svc/kiali 20001:20001 -n istio-system

7. Real-World Use Cases
A/B Testing & Canary Deployments
o Gradually shift traffic between two versions of a service
o Monitor new version’s behavior before full rollout
Zero-Trust Security with mTLS
o Encrypts all traffic between services
o Blocks unauthorized access
Resilient Service Communication
» Automatically retries failed requests
o Circuit breakers prevent cascading failures
Real-Time Traffic Insights

« Use Kiali, Jaeger, and Prometheus to monitor requests, latency, and
failures

8. Troubleshooting & Best Practices
@ebugging Traffic Routing Issues

Check if the VirtualService is applied correctly:
kubectl get virtualservice bookstore -o yaml

@ebugging mTLS Issues

24



(‘(- Devo S www.devopsshack.com
. Shoc O office@devopsshack.com

Verify if mTLS is énabled:
kubectl get peerauthentication -o yaml

@est Practices for Kubernetes Service Mesh

Use automatic sidecar injection (istio-injection=enabled)
Implement fine-grained access control (RBAC & JWT authentication)
Use distributed tracing to diagnose failures (Jaeger)

Gradually roll out updates with canary deployments

Enable circuit breakers to prevent cascading failures

Final Thoughts

KubeMesh provides a powerful, automated way to:

Secure microservices with mTLS, authentication, and authorization
Optimize service-to-service communication with intelligent traffic routing
Gain real-time observability with tracing, logging, and monitoring

By integrating Istio, Linkerd, Prometheus, and Kiali, KubeMesh enhances
Kubernetes networking, security, and reliability.

Project 4: KubeCl — A Kubernetes-Native Continuous
Integration & Deployment (Cl/CD) System

25



((- DeVO S www.devopsshack.com
¢ j Shoc O office@devopsshack.com

This guide will cover:

Introduction & Purpose

Architecture & Components

Installation & Setup

CI/CD Pipeline Implementation

Integrating GitHub Actions, ArgoCD, and Tekton Pipelines
Security Best Practices

Monitoring & Troubleshooting

1. Introduction

Modern software development requires automated CI/CD pipelines to
efficiently build, test, and deploy applications. KubeCl is a Kubernetes-native
ClI/CD system that integrates Tekton Pipelines, ArgoCD, and GitOps to achieve:

« Automated builds and tests when developers push code
« Seamless continuous deployment (CD) to Kubernetes

« GitOps workflows for version control and rollback

« Scalability and flexibility using Kubernetes-native tools

Why Use KubeCI?

Cloud-Native CI/CD: Designed specifically for Kubernetes
GitOps-Based Deployment: Ensures reproducibility and rollback
Declarative Pipelines: Easy YAML-based configurations

Secure & Scalable: Uses Kubernetes RBAC, namespaces, and secrets

2. KubeCl Architecture
KubeCl consists of three core components:
@ekton Pipelines (Cl)
« Defines and runs CI/CD workflows as Kubernetes resources

« Executes builds, tests, and artifact uploads

@rgoCD (CD)

26



DeVO ES www.devopsshack.com
. / ShQC office@devopsshack.com

« Continuously syncs Kubernetes manifests from Git repositories
« Manages application state and rollback

@itOps Workflow
« Git repository stores all application configurations

o Triggers deployment automatically on every push

3. Setting Up KubeCl in Kubernetes

Step 1: Install Tekton Pipelines (Cl Engine)

Tekton is a Kubernetes-native framework for building CI/CD pipelines.
Install Tekton Pipelines

kubectl apply --filename https://storage.googleapis.com/tekton-
releases/pipeline/latest/release.yaml|

Verify Installation

kubectl get pods -n tekton-pipelines

Step 2: Install ArgoCD (CD Engine)

ArgoCD is a GitOps-based continuous delivery tool.
Install ArgoCD

kubectl create namespace argocd

kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

Access ArgoCD Ul
kubectl port-forward svc/argocd-server -n argocd 8080:443

Navigate to https://localhost:8080 to access the UI.

Step 3: Create a CI/CD Namespace

kubectl create namespace kubeci

27



6‘ Devops
- _)ShocE

4. Implementing a CI/CD Pipeline with Tekton & ArgoCD
Step 1: Define a Tekton Pipeline for Continuous Integration
This pipeline will:
1. Clone code from GitHub
2. Build a Docker image
3. Push the image to DockerHub
Pipeline YAML (tekton-pipeline.yaml)
apiVersion: tekton.dev/vlbetal
kind: Pipeline
metadata:
name: build-and-deploy
spec:
tasks:
- name: fetch-source
taskRef:
name: git-clone
- name: build-image
taskRef:
name: kaniko
runAfter: ["fetch-source"]
- name: deploy-to-k8s
taskRef:
name: kubectl-apply

runAfter: ["build-image"]

Apply it:

www.devopsshack.com
office@devopsshack.com

28



((\ DeVOES www.devopsshack.com
- ) ShOC office@devopsshack.com

kubectl apply -f tekton-pipeline.yaml

Step 2: Define an ArgoCD Application for Deployment
ArgoCD continuously syncs Kubernetes manifests from a Git repository.
ArgoCD Application YAML (argo-app.yaml)
apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: my-app
spec:
project: default
source:
repoURL: "https://github.com/my-org/my-app.git"
path: "k8s/"
targetRevision: main
destination:
server: "https://kubernetes.default.svc"
namespace: my-app
syncPolicy:
automated:
prune: true
selfHeal: true
Apply it:
kubectl apply -f argo-app.yaml

5. Connecting GitHub Actions with KubeCl

29



DeVO S www.devopsshack.com
& _) ShQC office@devopsshack.com

Step 1: Create a GitHub Actions Workflow
This workflow:

o Builds and pushes a Docker image

o Triggers ArgoCD to deploy the latest version
GitHub Actions YAML (.github/workflows/deploy.yaml)

name: CI/CD Pipeline

on:
push:
branches:

- main

jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout code

uses: actions/checkout@v3

- name: Build Docker image
run: |
docker build -t myrepo/myapp:S{{ github.sha }}.
docker push myrepo/myapp:S{{ github.sha }}

- name: Trigger ArgoCD sync

run: |

30



((- Devo S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

curl -X POST -u S{{ secrets.ARGOCD _USERNAME }}:5{{
secrets. ARGOCD_PASSWORD }}\

https://argocd-server/api/vl/applications/my-app/sync

6. Security Best Practices for CI/CD

Use GitHub Secrets for storing credentials

Enable Role-Based Access Control (RBAC) in Kubernetes
Sign and scan Docker images for vulnerabilities

Restrict public access to ArgoCD Ul

7. Monitoring & Troubleshooting

1 Monitor Tekton Pipeline Runs

kubectl get pipelineruns -n kubeci

2 Check ArgoCD Application Status

kubectl get applications -n argocd

3 View Logs from Tekton Tasks

kubectl logs -n kubeci -I tekton.dev/taskRun=my-taskrun
@ebug GitHub Actions Failures

Go to GitHub - Actions - Workflow Runs and check logs.

Final Thoughts

KubeCl integrates Tekton, ArgoCD, and GitHub Actions to create a fully
automated CI/CD pipeline in Kubernetes.

Tekton handles Cl (build & test automation)
ArgoCD ensures continuous deployment using GitOps
GitHub Actions connects with the pipeline for triggering builds

This setup provides a secure, scalable, and Kubernetes-native Cl/CD workflow,
making deployments faster and more reliable!

31



Devops
@ Shoc www.devopsshack.com
@ office@devopsshack.com

32



((- DeVO S www.devopsshack.com
¢ j Shoc O office@devopsshack.com

Project 5: KubeEdge — Extending Kubernetes to the
Edge

This guide will cover:

Introduction & Purpose

Architecture & Components
Installation & Setup

Deploying Edge Applications

Device Management & loT Integration
Security Best Practices

Monitoring & Troubleshooting

1. Introduction

Kubernetes is powerful, but it was designed for cloud and data centers.
KubeEdge extends Kubernetes to edge computing environments, allowing
applications to run on edge nodes (e.g., loT devices, industrial sensors, retail
systems).

Why Use KubeEdge?

Brings Kubernetes to edge devices for real-time processing
Reduces cloud dependency and latency

Works offline — edge devices keep running even if disconnected
Seamless Kubernetes integration for managing edge workloads

Use Cases
o Smart Cities : Traffic monitoring, environmental sensors
« Industrial 1oT : Machine data collection, predictive maintenance
o Retail : Smart checkout systems, in-store analytics

o Healthcare : Remote patient monitoring

2. KubeEdge Architecture

KubeEdge consists of two main components:

33



DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

@Ioud Side (CloudCore)
e Runsin a Kubernetes cluster (public cloud, private data center)
« Manages edge nodes using custom CRDs (Custom Resource Definitions)
« Syncs workloads between cloud and edge

@dge Side (EdgeCore)

« Runs on edge devices (Raspberry Pi, industrial gateways, on-prem
servers)

» Processes data locally to reduce cloud traffic

« Manages devices connected via Bluetooth, MQTT, or Modbus

3. Installing KubeEdge
Step 1: Install Kubernetes on the Cloud

Set up a Kubernetes cluster using Minikube, K3s, or a cloud provider (AWS,
GKE, AKS).

curl -LO https://storage.googleapis.com/kubernetes-release/release/S(curl -s
https://storage.googleapis.com/kubernetes-
release/release/stable.txt)/bin/linux/amd64/kubectl

chmod +x kubect| && sudo mv kubectl /usr/local/bin/
Verify:

kubectl| version --client

Step 2: Install KubeEdge (CloudCore on Kubernetes)
Install the CloudCore component in Kubernetes:

wget
https://github.com/kubeedge/kubeedge/releases/download/v1.12.0/keadm-
v1.12.0-linux-amd64.tar.gz

tar -xvzf keadm-*.tar.gz && sudo mv keadm /usr/local/bin/

keadm init --advertise-address="<Cloud Public IP>"

34



DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

Verify CloudCore is running:

kubect! get pods -n kubeedge

Step 3: Install KubeEdge on an Edge Node (EdgeCore)
On the edge device (Raspberry Pi, Jetson Nano, or Industrial PC):

wget
https://github.com/kubeedge/kubeedge/releases/download/v1.12.0/keadm-
v1.12.0-linux-arm64.tar.gz

tar -xvzf keadm-*.tar.gz && sudo mv keadm /usr/local/bin/
Join the edge node to KubeEdge:

keadm join --cloudcore-ip=<Cloud Public IP>

Check if the edge node is connected:

kubectl get nodes

4. Deploying Applications to Edge Nodes
Step 1: Deploy an Edge Application (Example: Nginx Web Server)
Create a Deployment YAML targeting the edge node:
apiVersion: apps/vl
kind: Deployment
metadata:

name: edge-nginx
spec:

selector:

matchLabels:
app: nginx
template:

metadata:

35



DeVOES www.devopsshack.com
éj) ShQC @ office@devopsshack.com

labels:
app: nginx
spec:
nodeSelector:
"node-role.kubernetes.io/edge": "true"
containers:
- name: nginx
image: nginx:latest
ports:
- containerPort: 80
Apply it:
kubectl apply -f edge-nginx.yaml
Step 2: Expose the Application via Edge NodePort
apiVersion: vl
kind: Service
metadata:
name: edge-nginx-service
spec:
type: NodePort
selector:
app: nginx
ports:
- protocol: TCP
port: 80

nodePort: 30080

Apply it:

36



DeVO S www.devopsshack.com
& _) ShQC office@devopsshack.com

kubectl apply -f edge-nginx-service.yaml
Access it:

http://<EdgeNode_IP>:30080

5. Device Management & loT Integration

KubeEdge allows edge nodes to communicate with loT devices using MQTT,
Bluetooth, or Modbus.

Step 1: Deploy the Edge MQTT Broker
Create an MQTT broker to collect 10T data:
apiVersion: apps/vl
kind: Deployment
metadata:
name: mosquitto
spec:
selector:
matchLabels:
app: mosquitto
template:
metadata:
labels:
app: mosquitto
spec:
containers:
- name: mosquitto
image: eclipse-mosquitto:latest
ports:

- containerPort: 1883

37



DeVO S www.devopsshack.com
“ / ShQC office@devopsshack.com

Apply it:

kubectl apply -f mosquitto.yaml

Step 2: Connect loT Devices

loT sensors publish data via MQTT:

import paho.mqtt.client as mqtt

client = mqtt.Client()
client.connect("edge-node-ip", 1883, 60)
client.publish("sensor/temperature", "23.5")

KubeEdge can process these messages locally and send only necessary data to
the cloud.

6. Security Best Practices

Use Kubernetes RBAC to limit access to edge nodes
Enable TLS encryption for MQTT and APl communication
Configure firewall rules to protect edge devices

Ensure secure device authentication using certificates

7. Monitoring & Troubleshooting

@/Ionitor Edge Node Connectivity

kubectl get nodes

@heck KubeEdge Logs

kubectl logs -n kubeedge -l app=cloudcore
@ebug EdgeCore Issues

On the edge device, check logs:

journalctl -u edgecore -f

@/Ionitor loT Device Data (MQTT Messages)

mosquitto_sub -h edge-node-ip -t "sensor/temperature"

38



(‘(- Devo S www.devopsshack.com
¢ 4 Shoc O office@devopsshack.com

Final Thoughts

KubeEdge brings Kubernetes to the edge, enabling:

Offline edge computing (devices continue to function without internet)

Low-latency processing (analyze data at the edge before sending to the
cloud)

Scalability (manage thousands of edge nodes from a single Kubernetes
cluster)

This makes it ideal for 10T, smart cities, industrial automation, and healthcare.

39



(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

Conclusion

As Kubernetes continues to lead the charge in container orchestration, it brings
with it an inherent set of complexities—particularly around security, scaling,
and deployment efficiency. To successfully navigate these challenges,
leveraging a suite of advanced tools is essential. The combination of
KubeGuard, AutoScalerX, KubeFlowOps, ServiceMeshPro, and HelmWizard
offers a holistic approach to transforming your Kubernetes environments,
ensuring they are secure, agile, and high-performing.

KubeGuard fortifies your security by continuously monitoring and enforcing
best practices, while AutoScalerX ensures your resources are dynamically
adjusted for optimal performance. With KubeFlowOps, you can seamlessly
automate workflows for faster, more efficient software delivery.
ServiceMeshPro enables secure and reliable microservices communication,
and HelmWizard simplifies application deployment management, boosting
productivity and reducing error rates.

Together, these tools provide a unified platform to enhance operational
efficiency, reduce risk, and drive innovation in your Kubernetes clusters. By
incorporating these solutions, your organization can not only manage and scale
applications more effectively but also future-proof your infrastructure to meet
the demands of a rapidly evolving cloud-native ecosystem.

In essence, these tools empower your team to focus on what matters most—
delivering high-quality applications at speed—while ensuring security,
scalability, and seamless operations across your entire Kubernetes
infrastructure. Embracing this suite will help your organization stay
competitive, adaptable, and well-equipped to handle the growing demands of
modern software delivery.

40



