Cl/CD

Comprehensive Guide

L2 Devops
»O Shac

&

Devo S www.devopsshack.com
4 Shoc O office@devopsshack.com

Click here for DevSecOps & Cloud DevOps Course

DevOps Shack
GitHub Comprehensive Guide

Ultimate GitHub Actions CI/CD Pipeline Guide

Introduction to GitLab CI/CD
1. What is CI/CD?

Cl/CD stands for Continuous Integration and Continuous Delivery (or
Deployment), and it's one of the cornerstones of modern DevOps practices. It
helps teams deliver software more frequently, reliably, and with better quality.
The practice has evolved from a need to streamline the traditional software
development lifecycle (SDLC), which was often plagued by long integration
cycles, difficult testing, and error-prone manual deployments.

Continuous Integration (Cl)

Cl is the practice of automatically integrating code changes from multiple
contributors into a shared repository several times a day. Each integration is
verified by an automated build and test process, allowing teams to detect
problems early.

Key aspects of Cl include:

o Developers push code frequently to a central repository.

« Automated tools build and test the code.

 Failures are reported immediately, enabling quick resolution.
Continuous Delivery (CD)

CD extends ClI by automatically preparing code changes for release to
production. It ensures that software can be reliably released at any time. This
includes automated testing, staging, and release processes.

Continuous Deployment

https://www.devopsshack.com/courses/Batch-9--Zero-To-Hero--DevSecOps--Cloud-DevOps-67bdb260b8143724f042a2f0

(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

This is a step beyond continuous delivery. In continuous deployment, every
change that passes all stages of the production pipeline is automatically
deployed to users, without manual intervention.

2. Why CI/CD is Crucial in Modern Development

The modern software development landscape demands speed, agility, and
quality. Here's why CI/CD is crucial:

« Faster Time to Market: Automating build, test, and deployment
significantly reduces the time from development to release.

« Improved Code Quality: Frequent integration and automated testing
help identify and fix issues earlier.

« Reduced Risk: Smaller, incremental changes are easier to test, review,
and deploy.

« Enhanced Collaboration: CI/CD encourages developers to work together
more closely, resulting in more cohesive software.

« Supports Agile and DevOps Practices: It aligns perfectly with the
iterative nature of Agile development and the automation focus of
DevOps.

3. GitLab’s Role in CI/CD

GitLab is a complete DevOps platform delivered as a single application. It
provides built-in CI/CD capabilities that are tightly integrated with its version
control system, issue tracking, and security tools. This all-in-one approach
eliminates the need to integrate multiple tools and simplifies DevOps
workflows.

GitLab's Key CI/CD Features:
« Native support for pipelines via .gitlab-ci.yml
 Built-in Docker registry and Kubernetes integration
« Visual pipeline or and pipeline graphs
« Auto DevOps for intelligent pipeline generation
« Secret management and variable injection

« Extensive APl and webhook support

(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

4. Real-World Use Cases for GitLab CI/CD
GitLab CI/CD is versatile and can handle a variety of use cases:
A. Startups and Small Teams
« Fast setup, minimal tooling required
o Simplified deployment to cloud services (Heroku, AWS, etc.)
o Auto DevOps for getting started quickly
B. Enterprise Software Development
o Supports large teams and complex workflows
o Compliance, audit logs, and security integration
« Role-based access control (RBAC) and LDAP integration
C. Microservices Architectures
« Run services independently in their own pipelines
« Trigger child pipelines based on changes
« Isolated environments and deployments
D. Monorepo Management
« Conditional pipeline execution
« Directory-based triggers
« Efficient handling of large repositories
E. Machine Learning/Al
« Automate model training and evaluation
e Push trained models to storage or serve them via APIs
e Use CI/CD for reproducibility and model governance
F. Infrastructure as Code
« Deploy and manage infrastructure using Terraform, Ansible, etc.
« GitOps practices via GitLab environments

« Configuration drift detection and rollback

(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

5. Key Benefits of GitLab CI/CD

GitLab provides several benefits that make it a preferred Cl/CD tool for many
organizations:

« Single Source of Truth: One platform for code, CI/CD, security, and
monitoring.

« Tight SCM Integration: Seamless integration with merge requests,
branches, and commits.

 Security Built-in: Static and dynamic analysis, dependency scanning,
license compliance.

« Scalability: Works for small projects and large-scale enterprise pipelines.

« Efficiency: Speed up pipelines with caching, parallel jobs, and optimized
runners.

6. Evolution of GitLab CI/CD
GitLab Cl/CD has matured rapidly over the years:
o 2015: Introduction of GitLab CI with .gitlab-ci.yml
o 2016: Docker integration and shared runners
o 2017: Auto DevOps introduced
« 2019: Child pipelines and parent/child relationships

o 2020+: Kubernetes integration, security scanning, GitOps workflows,
pipeline efficiency improvements

Each version of GitLab introduces new features, often driven by community
feedback. GitLab's open-core model enables rapid iteration and innovation.

7. Basic CI/CD Flow in GitLab

Understanding the basic flow helps visualize how GitLab CI/CD operates:
1. Code Commit: A developer commits code to a branch.
2. Trigger: The push triggers the pipeline defined in .gitlab-ci.yml.

3. Runner Execution: A GitLab Runner picks up the job and starts executing
tasks.

((- DeVO S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

4. Build & Test: Jobs defined in stages (build, test, deploy) run in order.

5. Artifacts & Reports: Output (e.g., test results, coverage reports) is stored
as artifacts.

6. Deployment: If successful, the application is deployed to the target
environment.

7. Feedback Loop: Notifications, dashboards, and logs provide instant
feedback.

(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

B How GitLab CI/CD Works

%’ 1. Overview of the GitLab Cl/CD Workflow

At its core, GitLab CI/CD is a pipeline-based automation system that integrates
tightly with your code repository. It watches your GitLab project for changes
(commits, merges, pull requests), and based on your configuration (.gitlab-
ci.yml), it automatically triggers a pipeline.

Basic Flow:
1. Code Commit/Pull Request - triggers a pipeline.
2. Pipeline Initialized - defined stages begin execution.

3. Jobs Execute via GitLab Runners - using executors (Docker, Shell,
Kubernetes, etc.)

4. Artifacts and Reports - are stored/shared across jobs.

o

Environment Deployment - to dev, staging, or production.

o

Feedback Loop - integrates with GitLab Issues, MRs, and
security/compliance checks.

2. Understanding Pipeline Triggers
There are several ways a pipeline can be triggered in GitLab:

o Push-based triggers: Whenever you push a commit to a specific branch
(e.g., main, develop).

Merge Request triggers: Pipelines run to validate MRs before merging.

Scheduled Pipelines: Useful for nightly builds, test runs, or backups.

Manual Triggers: Jobs that require human approval (e.g., production
deployment).

APl/Webhook Triggers: You can invoke pipelines externally using
GitLab's API or integrate with third-party systems.

((- Devo S www.devopsshack.com
¢ 4 Shoc O office@devopsshack.com

$ Example: A pipeline:run webhook might be triggered from a JIRA card
status change.

3. Anatomy of a Pipeline: Stages, Jobs, and Steps
A pipeline is the top-level container of your CI/CD workflow.
¢ Stages:

These define the order of execution. Common stages:

e build

o test

« package
o deploy

o review

o cleanup

Stages run sequentially — all jobs in build must succeed before moving to
test.

¢ Jobs:
Each stage can contain one or more jobs. These are tasks like:
e Running tests
« Building Docker images
« Performing static code analysis
Jobs within a stage run in parallel (if runners are available).
¢ Steps (within a job):

Defined using the script: keyword, they're the actual shell commands
executed.

3 4. Lifecycle of a Job Execution

Each job execution follows this sequence:

s

DeVO S www.devopsshack.com
4 ShQC O office@devopsshack.com

1. Runner picks up the job from GitLab’s queue.
2. Pre-job phase:
o Cloning the repo
o Setting up environment variables
3. Job execution:
o Executes the script: commands in a clean environment
4. Post-job phase:
o Uploading artifacts
o Storing logs
o Sending success/failure status back to GitLab

If a job fails, dependent jobs (unless allow_failure: true) won't execute.

&, 5. GitLab Runners: The Workhorses
Runners are lightweight agents responsible for executing your pipeline jobs.
*~ Types of Runners:

« Shared Runners: Available across all GitLab projects (good for general
use).

« Specific Runners: Bound to a particular project or group.

« Group Runners: Available to multiple projects under a group.
Executors:

o Shell: Executes commands in the host shell.

« Docker: Spins up containers to isolate jobs.

o Kubernetes: Executes jobs in a pod on a K8s cluster.

o Custom: You can build custom executors as needed.

@ Use Docker or K8s for consistent build environments and better isolation.

(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

+ 6. Authentication & Permissions

® 7.

Jobs run with permissions defined by GitLab's role system (Guest,
Reporter, Developer, Maintainer).

Protected branches and environments ensure only authorized users can
deploy.

Token-based authentication is used for runners and external services
(e.g., image registries, AWS, Vault).

Integrations with the GitLab Ecosystem

One of GitLab CI/CD’s key strengths is how deeply it's integrated with the
GitLab ecosystem.

8.

Merge Requests: Pipeline status shows directly in the MR.
Issue Boards: Auto-link commits, pipelines, and deployments to issues.
Security Scanning: Built-in SAST, DAST, container scanning.

Release Management: Ties releases to tags, jobs, and change logs.

Feedback & Observability

GitLab provides built-in visibility into every step of your pipeline:

= o.

Pipeline Graph: Shows stages and jobs with success/failure indicators.
Job Logs: Each job's output is viewable in the Ul.

Test Reports: JUnit-style reports are parsed and displayed.

Code Quality Reports: Summarized inline with MRs.

Security Dashboards: Highlight vulnerabilities across projects.

Re-runs, Manual Actions & Rollbacks
You can re-run failed jobs or entire pipelines from the Ul or CLI.

Manual actions (when: manual) allow for controlled deployments.

10

&

Devo S www.devopsshack.com
4 Shoc O office@devopsshack.com

« Pipelines can also include rollback steps in case deployments fail.

10. Use Case Walkthrough: Example Workflow
Let's walk through a typical GitLab CI/CD pipeline for a web app:
Code Flow:

—

. Developer pushes code to feature/new-ui.

[\

. Pipeline triggers on push:
o Stage 1: lint job = checks syntax
o Stage 2: test job - runs unit tests
o Stage 3: build job = compiles app, creates Docker image
o Stage 4: deploy_dev - deploys to dev environment
3. A Merge Request is opened into main.
4. A new pipeline runs with stricter checks (e.g., security scan).
5. Once approved and merged:
o Stage 5: deploy_staging
o Manual stage: deploy_prod (requires approval)

6. Rollback logic is included if health-check fails post-deployment.

¢ 11. Security & Compliance in Action

Jobs can access masked CI/CD variables (e.g., API keys).

GitLab Vault integration allows fetching secrets securely.

Only authorized runners or branches can trigger sensitive jobs.

Compliance reports help enforce security and audit policies.

11

((- DeVO S www.devopsshack.com
. 4 ShQC O office@devopsshack.com

12. Connecting External Systems
You can extend GitLab CI/CD to interact with:
o Slack (notifications)

JIRA (issue updates)

Terraform (infra deployment)

AWS/GCP/Azure (cloud ops)
DockerHub/ECR/GitLab Container Registry

13. Dynamic Pipelines & DAG
GitLab supports Dynamic Pipelines:

« Pipelines that are generated at runtime based on logic (e.g., presence of
certain files).

« Great for monorepos or conditional logic.
DAG Pipelines (Directed Acyclic Graphs):

« Jobs run as soon as their dependencies are met (more efficient than
linear execution).

% 14. Summary: From Code to Production

In summary, GitLab CI/CD simplifies the entire software lifecycle:
o Code » Commit - Pipeline » Build - Test - Deploy -» Monitor
« Each step is automated, repeatable, and traceable.
o It scales from solo developers to massive enterprises.

Whether you're building a small app, deploying ML models, or managing
infrastructure, GitLab CI/CD offers a robust, integrated, and powerful way to
automate everything from source to production.

12

DeVO ES www.devopsshack.com
. / ShQC office@devopsshack.com

B Key Components and Terminologies in GitLab CI/CD

Understanding the key components of GitLab CI/CD is essential for anyone
aiming to build, manage, or optimize pipelines effectively. Let's break down
each of the major terms and concepts you'll encounter.

1. Pipeline

A pipeline is the core structure in GitLab CI/CD. It represents the sequence of
automated processes that get triggered on code changes. Pipelines consist of
stages, and within those stages are individual jobs.

Think of it like a factory assembly line:
o The pipeline is the whole line.
« Stages are the main steps in the process (e.g., build - test - deploy).
« Jobs are the workers in each step doing specific tasks.

Example:

stages:
- build
- test
- deploy

build_job:
stage: build
script: echo \"Building...\"

test_job:

stage: test

script: echo \"Testing...\"
deploy_job:

stage: deploy
script: echo \"Deploying...\"

2. Jobs

13

((- DeVO S www.devopsshack.com
¢ J Shoc O office@devopsshack.com

A job is a single task that runs as part of a pipeline. Each job runs in its own
isolated environment, and jobs in the same stage can run in parallel (if
resources allow).

Job attributes:

script: — the actual shell commands to run

« stage: — determines the order
« only: / except: — control execution logic
o artifacts: — files to persist and pass on
« tags: — used to assign jobs to specific runners
Example job:
test_job:
stage: test
script:
- npm install

- npm run test

& 3. Stages

Stages define the execution order of jobs in a pipeline. All jobs in one stage
must complete before the next stage begins.

Common stages:

e build

o test

e review
« staging

« production

Stages are declared in the stages: keyword, and every job must specify which
stage it belongs to.

14

(‘(- Devo S www.devopsshack.com
¢ 4 Shoc O office@devopsshack.com

Example:

i 4. GitLab Runner

A GitLab Runner is an agent that executes the jobs defined in the pipeline. It's
the executor that runs your scripts, builds containers, runs tests, etc.

There are two types:

« Shared Runners — available for all projects in GitLab

« Specific Runners — dedicated to a particular project or group
Executors used by Runners include:

o shell — runs on host machine

o docker —jobs run in containers

o kubernetes — jobs run in pods

e custom — user-defined execution method

< 5. Artifacts

Artifacts are files or directories generated by a job and saved to be used later
in the pipeline or for download. Common artifacts include:

o Test reports
o Build binaries
o Coverage results

° I_Ogs

15

DeVO S www.devopsshack.com
“ / ShQC office@devopsshack.com

Example:

build:
stage: build
script:
- make build
artifacts:
paths:

- build/
Artifacts can also be set to expire automatically after a certain period.

%’ 6. Environments

Environments represent where your application is deployed (e.g., dev, staging,
prod). GitLab tracks deployments and gives you a Ul to manage environment

status, URLs, and rollback history.
You can define:
« Static environments (e.g., production)

Dynamic environments (e.g., per-branch or per-merge-request preview
apps)
Example:

deploy_ prod:
stage: deploy
script:
- ./deploy.sh
environment:
name: production
url: https://app.example.com

+ 7. Variables
GitLab CI/CD uses variables to manage environment settings, secrets, and

dynamic values. They can be:

o Predefined (e.g., CI_COMMIT_SHA)

o Custom (defined in Ul or .gitlab-ci.yml)

16

DEVO S www.devopsshack.com
“ / ShQC O office@devopsshack.com

« Masked and Protected for sensitive data
Example:
script:
- echo $MY_SECRET
They can also be defined at:
o Project level
o Group level
o Runner level

e Job level

8. Cache

Cache helps speed up jobs by reusing previously downloaded files, like
dependencies or build outputs. Unlike artifacts, caches are not meant for
passing data between jobs, but for optimization.

Example:
cache:
paths:
- node_modules/

You can also define key: for versioning cache uniquely per branch or job.

< 9.Includes & Templates

To avoid repetition, GitLab allows you to include external files or use
templates. This makes your .gitlab-ci.yml modular and easier to manage.

Example:
include:
- project: 'my-group/common-templates’

file: '/templates/deploy.yml’

17

((- DeVO S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

You can also use built-in GitLab templates for things like Node.js, Docker,
Python, etc.

< 10. Triggers
Triggers are ways to start pipelines externally or conditionally:
o Manual jobs (when: manual)
o API Triggers (via token)
« Upstream/downstream pipelines
o Scheduled pipelines
« rules: for advanced control over pipeline logic
Manual Trigger Example:
deploy_prod:
stage: deploy
script: ./deploy.sh

when: manual

{ 11. Protected Branches & Jobs

Protected features in GitLab limit who can push or run jobs on sensitive
branches or environments like main or production.

o Only certain users or roles can trigger jobs on protected branches.

o Protected variables are only available to protected branches.

12. Retry, Timeout & Fail Rules
You can fine-tune job behavior:
 retry: to auto-retry on failure
« timeout: to limit job runtime
« allow_failure: to let pipelines pass even if a job fails

18

((- DeVO S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

Example:

job:
script: run-something
retry: 2

timeout; 10 minutes

Il 13. Reports
GitLab supports various reports that can be uploaded via artifacts:
o JUnit (test results)
o Code Coverage
« SAST / DAST / Dependency Scanning
+ License Scanning

These are automatically displayed in MRs if formatted correctly.

¢ Summary Table

Component |[Description

Pipeline Sequence of automated stages/jobs
Job Individual unit of work

Stage Ordered group of jobs

Runner Executes pipeline jobs

Artifact Files saved for future use

Environment|Target deployment context

Variables Dynamic values/secrets

Cache Optimized re-use of data

19

((' Devops
«._JShac

Component |[Description

Includes modularization

Triggers Manual/APl/conditional execution
Protected |Restricted access for security
Reports Display build/test/security info

www.devopsshack.com
O office@devopsshack.com

This section equips you with a solid understanding of all the essential terms
and moving parts in GitLab CI/CD. You'll now be able to read, write, and

debug .gitlab-ci.yml files with much more clarity.

20

DeVO ES www.devopsshack.com
. / ShQC office@devopsshack.com

m gitlab-ci.yml Structure

The .gitlab-ci.yml file is the heart of GitLab CI/CD. It defines the entire pipeline,
including what jobs to run, how to run them, and under what conditions.
Written in syntax, this file lives at the root of your repository and gets picked
up automatically by GitLab when changes are pushed.

Let's break it down step by step and explore everything you need to master
this file.

1. Basic Structure
The structure of a basic .gitlab-ci.yml file looks like this:
stages:
- build
- test

- deploy

build_job:
stage: build
script:

- echo "Building the app"

test_job:
stage: test
script:

- echo "Running tests"

deploy_job:
stage: deploy

21

DeVO S www.devopsshack.com
“ / ShQC office@devopsshack.com

script:
- echo "Deploying to production”

Each job is mapped to a stage, and each job contains at minimum a script:
section.

2. Defining Stages

Use the stages: keyword to define the order in which stages (and thus jobs)
run. All jobs within a stage will run in parallel, but stages themselves run
sequentially.

stages:
- lint
- build
- test
- deploy

¢ Alljobs in lint run = then build - then test = then deploy.

N\ 3. Writing Jobs
Each job is defined as a key-value pair:
job_name:
stage: <stage_name>
script:
- <command 1>
- <command 2>
Common job attributes:
o script: — the commands to run
« stage: — which stage this job belongs to

« image: — base Docker image for the job

22

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

« artifacts: — files to preserve
o cache: — speeds up builds
« only: / except: — control when the job runs

« tags: - runner targeting

4) 4. Using Docker Images
You can specify a Docker image per job or globally:
Global image:

image: node:18

stages:

- test

test_job:
script:
- npm install
- npm test
Job-level image:
test_job:
image: python:3.9
script:
- pip install -r requirements.txt

- pytest

23

www.devopsshack.com

6‘ DevoEs
. _) ShQC office@devopsshack.com

i 5. Advanced Job Configuration

Parallel Jobs
Run multiple instances of the same job (e.g., for matrix builds):

test:
script: run_tests.sh
parallel: 5
Retry on Failure
job:
script: ./test.sh
retry: 2
Timeout
job:
script: heavy_task.sh

timeout: 20 minutes

6. Rules vs. Only/Except
only / except (Legacy, but still used):
job:

script: run.sh

only:

- main
rules: (More flexible):
job:

script: run.sh

rules:
- if: 'SCI_COMMIT_BRANCH == "main""'

when: always

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

You can also use rules for dynamic pipelines (more on that later).

* 7. Artifacts & Caching
Artifacts:
Used to save outputs of a job (e.g., test reports, binaries).
build:
script: make build
artifacts:
paths:
- build/
expire_in: 1 week
Cache:
Used to speed up pipelines (e.g., dependency folders).
cache:
paths:
- node_modules/
You can use key: for versioning cache:
cache:
key: "$CI_COMMIT_REF_NAME"
paths:

- node_modules/

25

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

+ 8. Using Variables
Define in GitLab Ul or .gitlab-ci.yml:
variables:

NODE_ENV: production
Then use in jobs:
job:

script:

- echo $NODE_ENV

Also supports secrets via Cl/CD variables Ul, Vault, or group-level settings.

9. Includes and Templates

To reduce duplication, GitLab supports breaking up CI/CD config into reusable
templates.

Local include:
include: 'templates/deploy.yml'
Remote project include:
include:
- project: 'group/project’
file: '/templates/test.yml’
ref: 'main’
Multiple includes:
include:
- ‘common.yml’

- 'docker-build.yml’

26

DEVO S www.devopsshack.com
“ / ShQC O office@devopsshack.com

10. Best Practices

« Use anchors & aliases to reuse job definitions:

.default_job: &default_job
script:

- echo "Default behavior"

job1:

<<: *default_job

job2:
<<: *default_job
« Avoid deeply nested structures
« Use comments to document your pipeline logic

« Split config into includes if it gets too long

@, 11. Debugging Pipelines
« Use echo statements to trace logic
o Check Job Logs in GitLab Ul
o Use when: manual and allow_failure: true for experimentation
« Download artifacts for failed jobs

« Use CI_DEBUG_TRACE=true for verbose logging

27

EO S0’

@ 12. Real-World Example: Cl for Node.js App

image: node:18
stages:

- install

- test

- deploy

install_dependencies:
stage: install
script:
- npm install
cache:
paths:
- node_modules/

unit_tests:
stage: test
script:
- npm run test

deploy prod:
stage: deploy
script:
- npm run build
- ./scripts/deploy.sh
environment:
name: production
url: https://yourapp.com
only:
- main

www.devopsshack.com
office@devopsshack.com

Summary of Key Directives

Directive Description
stages Defines execution order
script Commands to run in job

28

((- DeVO S www.devopsshack.com
[4

)Shac ©) office@devopsshack.com
Directive Description
image Docker image to use
variables Env variables in job
cache Preserved folders between jobs
artifacts Files saved after job

only/rules |When to run job

tags Match runners

include Import external config

retry/timeout||Job control

This section gives you a full grasp of how .gitlab-ci.yml is structured and how
to write clean, scalable, and powerful pipelines using GitLab’s DSL.

7. Artifacts, Caching & Dependencies
[Artifacts

Artifacts are job outputs that you want to preserve after the job ends. They're
useful for:

« Sharing test results
« Keeping build files for deployment

« Retaining logs or coverage reports

build:
script: npm run build
artifacts:
paths:
- dist/
expire_in: 1 week

29

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

Caching
Caching helps speed up pipeline execution by reusing dependencies (e.g.,
node_modules/, .m2/, or .venv/).

cache:
paths:
- node_modules/
Use key: to control cache versioning and avoid invalidation:

cache:
key: "$CI_COMMIT_REF_SLUG"
< Dependencies

The dependencies: keyword allows one job to fetch artifacts from a previous
job, even if they're not in the same stage.

test:
stage: test
dependencies:

- build

8. Environments & Deployments
B What Are Environments?

An environment represents a deployment target — dev, staging, or prod.
GitLab keeps a deployment history, URLs, and even enables Review Apps.

deploy_staging:
environment:
name: staging

url: https://staging.myapp.com

30

DeVO ES www.devopsshack.com
.) ShQC office@devopsshack.com

%’ Review Apps
Automatically spin up a temporary app per branch or merge request:
deploy_review:
environment:
name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com
£ Rollbacks
You can use manual jobs or scripts to rollback:
rollback_prod:
stage: deploy
script: ./rollback.sh

when: manual

9. Security, Secrets, and Vaults
+ CI/CD Variables
Use GitLab's Ul to store secrets like API keys:
o Masked (not visible in logs)
o Protected (only on protected branches)
script:
- curl -H \"Authorization: Bearer $API_ TOKEN\" ...
+ HashiCorp Vault Integration
GitLab supports dynamic secret injection from Vault:
« Use JWT OIDC tokens to authenticate
« Map GitLab variables to Vault paths

« Secrets fetched at runtime, never stored in .ym|

31

DeVO ES www.devopsshack.com
. / ShQC office@devopsshack.com

{ Security Scanning
GitLab Ultimate offers:
o SAST (Static Application Security Testing)
o DAST (Dynamic Testing)
« Dependency Scanning
« License Compliance

All run as pipeline jobs with results shown in Merge Requests.

10. CI/CD Templates & Includes
Includes
Modularize pipelines using include: to reuse configs.
include:
- project: my-group/common
file: '/templates/deploy.yml’
Supports:
o Local paths
o Remote URLs
o Project files
o Auto DevOps templates
&) Anchors
Define reusable job blocks:
.default-job: &default_job
image: node:18
script:

- npm install

32

DeVO S www.devopsshack.com
“ / ShQC O office@devopsshack.com

jobT:

<<: *default_job

job2:

<<: *default_job

11. GitLab CI/CD for Monorepos & Microservices
<" Monorepo Strategy

Use rules: or changes: to run only what's needed:

job:
script: ./run.sh
rules:
- changes:
- service-a/**
Combine with dynamic pipelines for flexibility:
trigger:
trigger:
include: generated-pipeline.yml
< Microservices Setup
Each service has its own .gitlab-ci.yml:
e Run builds/test/deploy only for changed services
o Use parent-child pipelines to control flow

o Can run independent or orchestrated deployments

12. Best Practices

33

((- Devo S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

« Keep Pipelines Fast
Use parallel jobs, proper caching, and limit unnecessary tasks.

« Fail Fast
Run lightweight checks (lint, format) early in the pipeline.

« Use rules: Instead of only/except:
More powerful and readable for complex logic.

« Secure Sensitive Data
Mask variables, use protected runners, and never hardcode secrets.

« Use Modular .yml Files
Especially for microservices or multi-stage apps.

« Monitor & Clean Up Artifacts
Use expire_in: to avoid bloated storage.

13. Advanced Concepts & Use Cases
Parent-Child Pipelines
Organize complex systems into smaller units:
main:
trigger:
include: .child-pipeline.yml
&% Dynamic Pipelines
Generate .yml dynamically via script or conditional logic.
Matrix Builds
Run the same job across multiple configs:
parallel:
matrix:
- VARIANT: [lite, full]

OS: [ubuntu, alpine]

34

((- DeVO S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

~~ Custom Metrics & Observability
Use:
« artifacts:reports: for test and code quality

« Monitoring integrations for logs, metrics, and alerts

14. Common Pitfalls

X Overly Complex .gitlab-ci.yml

Modularize using includes, templates, or anchors.

X Ignoring Job Failures

Use allow_failure: true sparingly. Investigate failing jobs early.
X Misusing Cache vs. Artifacts

Cache is for speed. Artifacts are for passing files between jobs.
>C Running All Jobs on Every Push

Use rules: and changes: to avoid unnecessary builds/tests.

X Security Gaps

Never expose secrets. Avoid using public runners for sensitive work.

15. Final Thoughts

GitLab CI/CD is one of the most powerful and flexible pipeline tools in the
DevOps ecosystem. Whether you're building simple web apps or managing
enterprise-scale microservices, GitLab provides everything you need:

Full pipeline automation
Integrated security

Dynamic configurations
Multi-environment deployments
Developer-first UX

35

